CHỦ ĐỀ: LŨY THỪA BẬC N CỦA ! NHỊ THỨC
Bài 2: Tìm tổng các hệ số có đƣợc sau khi khai triển đa thức
a, \(\left(5x-2\right)^5\)
b, \(\left(x^2+x-2\right)^{2010}+\left(x^2-x+1\right)^{2011}\)
Làm bài theo chủ đề giúp mình xin cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+y\right)^4+x^4+y^4\)
\(=\left(x^2+2xy+y^2\right)^2+x^4+y^4\)
\(=x^4+4x^2y^2+y^4+x^4+y^4+4x^3y+2x^2y^2+4xy^3\)
\(=2x^4+2y^4+6x^2y^2+4x^3y+4xy^3\)
\(=2\left(x^4+y^4+3x^2y^2+2x^3y+2xy^3\right)\)
\(=2\left(x^4+y^4+x^2y^2+2x^2y^2+2x^3y+2xy^3\right)\)
\(=2\left(x^2+xy+y^2\right)^2\)
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
\(\left(a+b\right)^3-a^3-b^3\)
\(=a^3+b^3+3ab\left(a+b\right)-a^3-b^3\)
\(=3ab\left(a+b\right)\)
a: \(=\dfrac{x^4-6x^3+12x^2-14x+3}{x^2-4x+1}\)
\(=\dfrac{x^4-4x^3+x^2-2x^3+8x^2-2x+3x^2-12x+3}{x^2-4x+1}\)
\(=x^2-2x+3\)
b: \(=\dfrac{x^5-3x^4+5x^3-x^2+3x-5}{x^2-3x+5}=x^2-1\)
c: \(=\dfrac{2x^4-5x^3+2x^2+2x-1}{x^2-x-1}\)
\(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
a: Tổng các hệ số thu được là: \(\left(5\cdot1-2\right)^5=\left(5-2\right)^5=243\)
b: Tổng các hệ số thu được là:
\(\left(1^2+1-2\right)^{2010}+\left(1^2-1+1\right)^{2011}\)
\(=0+\left(1-1+1\right)^{2011}\)
=1