CHỦ ĐỀ: CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ
NGHUYÊN
1 Tìm số nguyên n để:
b, \(n^3-3n^2-3n-1\) chia hết cho \(n^2+n-1\)
Làm theo chủ đề !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n-1)-4(n^2+n-1)+2n-5$
$=(n-4)(n^2+n-1)+2n-5$
Để $n^3-3n^2-3n-1\vdots n^2+n-1$ thì:
$2n-5\vdots n^2+n-1(1)$
$\Rightarrow n(2n-5)\vdots n^2+n-1$
$\Rightarrow 2(n^2+n-1)-7n+2\vdots n^2+n-1$
$\Rightarrow 7n-2\vdots n^2+n-1(2)$
Từ $(1); (2)\Rightarrow 7n-2-3(2n-5)\vdots n^2+n-1$
$\Rightarrow n+13\vdots n^2+n-1(3)$
Từ $(1); (3)\Rightarrow 2(n+13)-(2n-5)\vdots n^2+n-1$
$\Rightarrow 31\vdots n^2+n-1$
$\Rightarrow n^2+n-1\in\left\{\pm 1; \pm 31\right\}$
Đến đây bạn xét các TH để tìm $n$ thôi.
\(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
11,
a, 4x-3\(\vdots\) x-2 1
x-2\(\vdots\) x-2\(\Rightarrow\) 4(x-2)\(\vdots\) x-2\(\Rightarrow\) 4x-8\(\vdots\) x-2 2
Từ 1 và 2 ta có:
(4x-3)-(4x-8)\(\vdots\) x-2
\(\Rightarrow\) 4x-3-4x+8\(\vdots\) x-2
\(\Rightarrow\) 5 \(\vdots\) x-2
\(\Rightarrow\) x-2\(\in\) Ư(5)
\(\Rightarrow\) x-2\(\in\){-5;-1;1;5}
\(\Rightarrow\) x\(\in\) {-3;1;3;7}
Vậy......
Phần b và c làm tương tự như phần a pn nhé!
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
a, 3 chia hết cho n + 5
=> n + 5 thuộc Ư (3)
=> n + 5 thuộc {-1;1;-3;3}
=> n thuộc {-6;-4;-8;-2}
b, -3n + 2 chia hết cho 2n + 1
=> -2(-3n + 2) chia hết cho 2n + 1
=> 6n - 4 chia hết cho 2n + 1
=> 6n + 3 - 7 chia hết cho 2n + 1
=> 3(2n + 1) - 7 chia hết cho 2n + 1
=> 7 chia hết cho 2n + 1
làm như a
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
Ta có: B=n2+n3=n.(n2+1)
Vì n là số tự nhiên=>n có 2 dạng là 2k và 2k+1
*Với n=2k=>B=n.(n2+1)=2k.(2k2+1) chia hết cho 2=>B chẵn(1)
*Xét n=2k+1=>B=n.(n2+1)=(2k+1).((2k+1)2+1)
=>B=(2k+1).(2k2+2.2k.1+12+1)
=>B=(2k+1).(2k.2k+2.2k+1+1)
=>B=(2k+1).(2.4k+2.2k+2)
=>B=(2k+1).(4k+2k+1).2 chia hết cho 2
=>B chẵn(2)
Từ (1) và (2)=>B là số chẵn
=>B:2(dư 0)
Mình cứ tưởng trên đời này có mỗi mình tuôi là khổ nhất hóa ra còn người khổ hơn tuôi nưa!!! Đò chính là nguyenminhtam
Noooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo!!!!!!