K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

Ta có: \(f\left(x\right)=\left(2\sqrt{2}-3\right)x+2\sqrt{2}+3\)

\(\Rightarrow f\left(a\right)=\left(2\sqrt{2}-3\right)a+2\sqrt{2}+3\)

Mà: \(f\left(a\right)=0\)

\(\Rightarrow\left(2\sqrt{2}-3\right)a+2\sqrt{2}+3=0\)

\(\Leftrightarrow\left(2\sqrt{2}-3\right)a=-\left(2\sqrt{2}+3\right)\)

\(\Leftrightarrow a=-\dfrac{2\sqrt{2}+3}{2\sqrt{2}-3}\) (trục căn) 

\(\Leftrightarrow a=17+12\sqrt{2}\) 

Vậy: \(a=17+12\sqrt{2}\Leftrightarrow f\left(a\right)=0\)

NV
22 tháng 3 2022

Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)

Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)

\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)

\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)

23 tháng 3 2022

em cảm ơn nhìu ạ<3

NV
6 tháng 3 2021

a.

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+3m+5\ne0\) ; \(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+3m+5\right)< 0\)

\(\Leftrightarrow-5m-4< 0\)

\(\Leftrightarrow m>-\dfrac{4}{5}\)

b. 

\(\Leftrightarrow x^2+2\left(m-1\right)x+m^2+m-6\ge0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(m^2+m-6\right)\le0\)

\(\Leftrightarrow-3m+7\le0\)

\(\Rightarrow m\ge\dfrac{7}{3}\)

c.

\(x^2-2\left(m+3\right)x+m+9>0\) ;\(\forall x\)

\(\Leftrightarrow\Delta'=\left(m+3\right)^2-\left(m+9\right)< 0\)

\(\Leftrightarrow m^2+5m< 0\Rightarrow-5< m< 0\)

11 tháng 10 2023

sao lại phải =0

 

NV
29 tháng 3 2022

\(f'\left(x\right)=\dfrac{1}{2\sqrt{2+x}}-\dfrac{1}{2\sqrt{7-x}}+\dfrac{5-2x}{2\sqrt{\left(2+x\right)\left(7-x\right)}}\)

\(f'\left(x\right)\) không xác định khi \(\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

\(f'\left(x\right)=0\Rightarrow\sqrt{7-x}-\sqrt{2+x}+5-2x=0\)

\(\Rightarrow x=\dfrac{5}{2}\)

19 tháng 10 2020

a) Để hàm xác định thì \(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) Ta có: \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(\Rightarrow f\left(4-2\sqrt{3}\right)=\frac{\sqrt{4-2\sqrt{3}}+1}{\sqrt{4-2\sqrt{3}}-1}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{\sqrt{\left(\sqrt{3}-1\right)^2}-1}=\frac{\sqrt{3}}{\sqrt{3}-2}\)

và \(f\left(a^2\right)=\frac{\sqrt{a^2}+1}{\sqrt{a^2}-1}=\frac{\left|a\right|+1}{\left|a\right|-1}\)(với \(a\ne\pm1\))

* Nếu \(a\ge0;a\ne1\)thì \(f\left(a^2\right)=\frac{a+1}{a-1}\)

* Nếu \(a< 0;a\ne-1\)thì \(f\left(a^2\right)=\frac{a-1}{a+1}\)

c) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)

Để f(x) nguyên thì \(\frac{2}{\sqrt{x}-1}\)nguyên hay \(2⋮\sqrt{x}-1\Rightarrow\sqrt{x}-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\sqrt{x}-1\ge-1\)nên ta xét ba trường hợp:

+) \(\sqrt{x}-1=-1\Rightarrow x=0\left(tmđk\right)\)

+) \(\sqrt{x}-1=1\Rightarrow x=4\left(tmđk\right)\)

+) \(\sqrt{x}-1=2\Rightarrow x=9\left(tmđk\right)\)

Vậy \(x\in\left\{0;4;9\right\}\)thì f(x) có giá trị nguyên 

d) \(f\left(x\right)=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)\(f\left(2x\right)=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\)

f(x) = f(2x) khi \(\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{2x}+1}{\sqrt{2x}-1}\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{2x}-1\right)=\left(\sqrt{x}-1\right)\left(\sqrt{2x}+1\right)\)\(\Leftrightarrow\sqrt{2}x+\sqrt{2x}-\sqrt{x}-1=\sqrt{2}x-\sqrt{2x}+\sqrt{x}-1\)\(\Leftrightarrow\sqrt{2x}-\sqrt{x}=-\sqrt{2x}+\sqrt{x}\Leftrightarrow2\sqrt{2x}=2\sqrt{x}\Leftrightarrow\sqrt{2x}=\sqrt{x}\Leftrightarrow x=0\)(tmđk)

Vậy x = 0 thì f(x) = f(2x)

30 tháng 3 2022

Cho hàm số y=f(x)y=f(x) có đạo hàm và liên tục trên [0;π2][0;π2]thoả mãn f(x)=f′(x)−2cosxf(x)=f′(x)−2cosx. Biết f(π2)=1f(π2)=1, tính giá trị f(π3)f(π3)

A. √3+1/2         B. √3−1/2          C. 1−√3/2             D. 0

22 tháng 10 2021

a: TXĐ: D=R

b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)

\(f\left(0\right)=\sqrt{0+1}=1\)

\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)

\(f\left(2\right)=\sqrt{3}\)

13 tháng 12 2018

đề không sai mà làm không ra.