K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

1: Xét tứ giác AMBO có

\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

=>AMBO là tứ giác nội tiếp đường tròn đường kính OM

2: ΔONP cân tại O

mà OK là trung tuyến

nên OK vuông góc NP

\(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)

=>O,K,A,M,B cùng thuộc 1 đường tròn

a: ΔONP cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)NP tại K

Ta có: \(\widehat{OAM}=\widehat{OBM}=\widehat{OKM}=90^0\)

=>O,A,M,B,K cùng thuộc đường tròn đường kính OM

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot OM=OA^2=R^2\)

Xét ΔOAM vuông tại A có AI là đường cao

nên \(OI\cdot IM=IA^2\)

c: AC\(\perp\)BM

OB\(\perp\)BM

Do đó: OB//AC

=>OB//AH

BD\(\perp\)MA

OA\(\perp\)MA

Do đó: BD//OA

=>BH//OA

Xét tứ giác OBHA có

OB//HA

OA//HB

Do đó: OBHA là hình bình hành

Hình bình hành OBHA có OB=OA

nên OBHA là hình thoi

d: OBHA là hình thoi

=>OH là đường trung trực của BA

mà M nằm trên đường trung trực của BA(cmt)

nên O,H,M thẳng hàng

4 tháng 7 2018

a, HS tự làm

b, Chú ý  O K M ^ = 90 0  và kết hợp ý a) => A,M,B,O,K ∈ đường tròn đường kính OM

c, Sử dụng hệ thức lượng trong tam giác vuông OAM ( hoặc có thể chứng minh tam giác đồng dạng)

d, Chứng minh OAHB là hình bình hành và chú ý A,B thuộc (O;R) suy ra OAHB là hình thoi

e, Chứng minh OH ⊥ AB, OMAB => O,H,M thẳng hàng

14 tháng 12 2021

1 vì K là trung điểm NP nên OK vuông góc NP ( Quan hệ đường kính và dây cung ) suy ra góc OKM=90 độ .Theo tính chất tiếp tuyến ta có góc OAM=90 độ , góc OBM = 90 độ như vậy K,A,B cùng nhìn OM dưới một góc 90 độ nên cùng nằm trên dường tròn đường kính OM . vậy ..........

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Hình vẽ:

a: Xét ΔMCD và ΔMEC có

góc MCD=góc MEC
góc CMD chung

=>ΔMCD đồng dạng với ΔMEC

b: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại K

ΔMCO vuông tại C có CK là đường cao

nên MK*MO=MC^2

c: góc AOC=2*góc AIC=120 độ

=>góc AOM=góc COM=60 độ

Xét ΔCOM vuông tại C có tan COM=CM/CO

=>CM/R=căn 3

=>CM=R*căn 3