K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

a: Xét hình thang AHKB có

O là trung điểm của AB

OM//AHKB

Do đó: M là trung điểm của HK

b: Kẻ MN vuông góc với AB

Xét tứ giác AHMN có \(\widehat{AHM}+\widehat{ANM}=180^0\)

=>AHMN là tứ giác nội tiếp

=>\(\widehat{MAN}=\widehat{MHN}\)

Xét tứ giác MNBK có \(\widehat{MNB}+\widehat{MKB}=180^0\)

=>MNBK nội tiếp

=>\(\widehat{MBN}=\widehat{MKN}\)

Xét (O) có

ΔMAB nội tiếp

AB là đường kính

Do đó: ΔMAB vuông tại M

=>\(\widehat{MAB}+\widehat{MBA}=90^0\)

=>\(\widehat{NHK}+\widehat{NKH}=90^0\)

=>ΔNKH vuông tại N

ΔNKH vuông tại N có NM là trung tuyến

nên MH=MN

Xét (M) có

MN là bán kính

AB vuông góc MN tại N

Do đó: AB là tiếp tuyến của (M)

=>ĐPCM

27 tháng 11 2021

a, 700 góc nào bạn ? 

b, Vì AB là tiếp tuyến (O) => ^ABO = 900 

AO giao BC = K 

AB = AC ; OB = OC = R 

Vậy OA là đường trung trực đoạn BC 

Xét tam giác ABO vuông tại B, đường cao BK

Áp dụng định lí Pytago tam giác ABO vuông tại B 

\(AB=\sqrt{AO^2-BO^2}=\sqrt{16-4}=2\sqrt{3}\)cm 

Áp dụng hệ thức : \(BK.AO=BO.AB\Rightarrow BK=\frac{BO.AB}{AO}=\frac{4\sqrt{3}}{4}=\sqrt{3}\)cm 

Vì AO là đường trung trực => \(BC=2KB=2\sqrt{3}\)cm 

Chu vi tam giác ABC là :

 \(P_{ABC}=AB+AC+BC=2AB+BC=4\sqrt{3}+2\sqrt{3}=6\sqrt{3}\)cm 

NV
24 tháng 12 2020

Hướng dẫn, ghét hình học phẳng:

Để ý rằng AB vuông góc (M) tại H nên AH, BH cũng là các tiếp tuyến của (M)

- Nối MA, MB

\(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn (O) nên suy ra...

- AH, AC là 2 tiếp tuyến \(\Rightarrow\widehat{AMC}=\widehat{AMH}\)

Tương tự: \(\widehat{BMD}=\widehat{BMH}\)

\(\Rightarrow\widehat{CMD}=2\left(\widehat{AMH}+\widehat{BMH}\right)\)

b. AC, AH, BD, BH là các tiếp tuyến nên \(\left\{{}\begin{matrix}AC=AH\\BD=BH\end{matrix}\right.\) \(\Rightarrow AC+BD=...\)

c.

AC song song BD (cùng vuông CD), O và M lần lượt là trung điểm AB, CD 

\(\Rightarrow OM\) là đtb hình thang vuông ABDC \(\Rightarrow OM\) vuông CD

Hệ thức lượng tam giác vuông OMK: \(OM^2=OH.OK\)

Mà \(OM=\dfrac{AB}{2}\Rightarrow...\)

1: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB

Gọi G là giao điểm của OM và AB

=>MO vuông góc với AB tại G

\(AM=R\sqrt{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)

\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)

\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)

2: Xét tứ giác NHBI có 

\(\widehat{NHB}+\widehat{NIB}=180^0\)

Do đó: NHBI là tứ giác nội tiếp

Suy ra: \(\widehat{NHI}=\widehat{NBA}\)

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

28 tháng 10 2017

Ta có ABCD là hình thang vuông tại C và D

Mà O Là trung điểm AB và OM vuông góc với CD( tiếp tuyến của (O)

=> AD+BC=2OM=2R.  Chú ý rằng CD ≤ AB (hình chiếu đường xiên)

=>  S A B C D = 1 2 A D + B C . C D

= R.CD ≤ R.AB = 2 R 2

Do đó S A B C D  lớn nhất khi CD=AB hay M là điểm chính giữa nửa đường tròn đường kính AB