chứng minh rằng bất đẳng thức sau thỏa mãn với mọi x;y
a, x2 +xy +y2 +1>0
b,x2 +5y2 +2x -4xy-10y +14 >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+10y^2-6xy-4x-10y+14\)
\(=\left(4x^2-4x+1\right)+\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)-12\)
\(=\left(2x-1\right)^2+\left(x-3y\right)^2+\left(y-5\right)^2-12\ge-12\) đề có nhầm không bạn?
Ta có: \(3mx>x+2\Rightarrow\left(3m-1\right)x>2\left(1\right)\)
Với \(3m-1=0\Rightarrow0>2\): Vô lý nên \(3m-1\ne0.\)
Với \(3m-1>0\Leftrightarrow\Rightarrow m>\frac{1}{3}\Rightarrow x>\frac{2}{3m-1}.\)
Để (1) đúng với mọi x > 1 suy ra\(1\ge\frac{2}{3m-1}\Rightarrow\frac{2}{3m-1}-1\le0\Rightarrow\frac{3-3m}{3m-1}\le0\)
Do 3m - 1 > 0 nên \(3-3m\le0\Rightarrow m\ge1.\)
Kết hợp điều kiện suy ra \(m\ge1.\)
Với \(3m-1< 0\Leftrightarrow\Rightarrow m< \frac{1}{3}\Rightarrow x< \frac{2}{3m-1}.\)
Khi đó không xảy ra trường hợp \(\forall x>1\) thì \(x< \frac{2}{3m-1}.\)
Vậy trường hợp này loại.
Kết luận \(m\ge1.\)
+ x+y=2 ta có bảng
x | 0 | 1 | 2 |
y | 2 | 1 | 0 |
+khi x=0, y=2 ta có BPT 04 + 24 >= 2
+ khi x= 1, y=1 ta có BPT 14 + 14 >=2
+ khi x = 2, y=0 ta có BPT 24 + 04 >=2
Nên x4 + y4 >=2
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)
b/ \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)