K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

 Ta thấy \(2A=2+2^3+2^4+...+2^{2022}\)

\(\Rightarrow A=2A-A=2^{2022}+2-2^2-1\) \(=2^{2022}-3\)

 Ta có tính chất quan trọng sau: Một số chính phương lẻ khi chia cho 8 chỉ số thể dư 1. (*)

 Thật vậy, với mọi k tự nhiên thì \(\left(2k+1\right)^2=4k^2+4k+1=4k\left(k+1\right)+1\). Khi đó do \(4k\left(k+1\right)⋮8\) nên hiển nhiên (*) đúng.

 Thế nhưng, ta thấy \(2^{2022}-3\) chia 8 dư 5 nên mâu thuẫn. Vậy A không thể là số chính phương.

3 tháng 6 2022

ko tận cùng là 2;3;7;8
ko tận cùng là 1 vì 11 chia 4 dư 3
ko tận cùng là 5 vì chia 55 chia 4 dư 3
ko tận cùng là 6 vì 66 chia 4 dư 2
ko tận cùng là 9 vì 99 chia 4 dư 3
vậy số có dạng là a000,a444
với số có dạng là a000 thì a chỉ có thể là 1;3;4;6;7;9
với số có dạng là a444 thì a chỉ có thể là 1;3;4;6;7;9
thử đi, có 6TH thôi=))

3 tháng 6 2022

2. a và b đồng dư 0;1 mod 4
nên a-b đồng dư 0;1;3 mod 4
mà 2014 đồng dư 2 mod 4
nên ko tồn tại a;b

15 tháng 12 2015

ai tick cho mik lên 250 điểm hỏi đáp với.

AH
Akai Haruma
Giáo viên
11 tháng 8 2021

Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$

Do đó $A$ không là số chính phương 

-----------------------

$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$

$94^{100}\equiv 0\pmod 4$

$1994^{100}\equiv 0\pmod 4$

$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$

Một scp không thể chia 4 dư 2 nên $B$ không là scp

---------------

Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.