Tìm số dư của phép chia (3100 + 5100) cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
Bài 1:
$B=1+3+3^2+3^3+...+3^{100}$
$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$
$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$
$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$
$\Rightarrow B$ chia 4 dư 1.
Bài 2:
$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$
$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$
$\Rightarrow C+5C=5-5^{2025}$
$6C=5-5^{2025}$
$C=\frac{5-5^{2025}}{6}$
B = 3 + 32 + 33 + 34 + ... + 3100
B = 31 + 32 + 33 + 34+... + 3100
Xét dãy số: 1; 2; 3; 4; ...; 100 dãy số này là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1 + 1 = 100.
Vậy B có 100 hạng tử, vì 100 : 3 = 33 dư 1
Nên nhóm 3 hạng tử liên tiếp của B lại thành một nhóm ta được
B = (3100 + 399 + 398) + (397 + 396 + 395) + ... + (34 + 33 + 32) + 3
B = 398.(32 + 3 + 1) + 395.(32 + 3 + 1) + ... + 32.( 32 + 3 + 1) + 3
B = 398. 13 + 395.13 + ... + 32.13 + 3
B = 13.(398 + 395 + ... + 32) + 3
Vì: 13. (398 + 395 + ... + 32) ⋮ 13
⇒ B : 13 dư 3
tổng SBC và SC là;
2157-17-8x2=2124
Vì trong SBC còn 1 lần số dư nữa.
SBC là:2124:(17+1)x17+8=2014
SC là; (2014-8):17=118
Đ/S:2014 và 118
t ick cho mình nha
Ta có:2(10a+b)-(3a+2b)
=20a+2b-3a-2b
=17a chia hết cho 17
Mà (3a+2b) chia hết cho 17 nên 2(10a+b) chia hết cho 17
Vì 2 không chia hết cho 17 nên 10a+b chia hết cho 17
Vậy số dư của phép chi 10a+b cho 17 là:0
Dùng kiến thức đồng dư là đơn giản nhất!
Xét mod 17
+310 ≡ 8 =>3100 = (310)10 ≡ 810 ≡ 13.
+510 ≡ 9 => 5100 = (510)10 ≡ 910 ≡ 13.
=> 3100 + 5100 ≡ 13 + 13 ≡ 9.
Vậy số dư là 9.