K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Ta thấy: \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
Thay x + y = 2 vào biểu thức trên ta được:
\(2^2-\left(x-y\right)^2=4xy\)
\(\Rightarrow4-\left(x-y\right)^2=4xy\)
Do \(\left(x-y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow4-\left(x-y\right)^2\le4\) ( mọi x và y )
\(\Rightarrow4xy\le4\) ( mọi x và y )
\(\Rightarrow xy\le1\) ( mọi x và y )
Vậy với mọi x và y, nếu \(x+y=2\) thì \(xy\le1\). Đẳng thức xảy ra khi và chỉ khi:
\(4xy=4\)
\(\Rightarrow4-\left(x-y\right)^2=4\)
\(\Rightarrow\left(x-y\right)^2=0\)
\(\Rightarrow x-y=0\)
\(\Rightarrow x=y\)

1 tháng 8 2017

đặt x = 1 + a ; y = 1 - a thì x + y = ( 1 + a ) + ( 1 - a ) = 2

xy = ( 1 + a ) . ( 1 - a )

xy = 1 - a2

Mà a2 \(\ge\)0

\(\Rightarrow\)1 - a2 \(\le\)1

4 tháng 7 2019

\(\Leftrightarrow\frac{1}{1+x^2}-\frac{1}{1+xy}+\frac{1}{1+y^2}-\frac{1}{1+xy}\ge0.\)

\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(y+x^2y-x-xy^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\left(lđ\forall x,y\ge1\right)\)

Dấu "=" xra khi x=y=1

11 tháng 9 2016

a có xy<=(x+y)^2/4 
cm 
<=> 4xy<=x^2+y^2+2xy 
<=> (x^2+y^2-2xy)>=0 
<=>(x-y)^2>=0 (dúng0) 
áp dụng xy<=(x+y)^2/4=2^2/4=1 
daứ = xảy ra là x=y=1 
cach nđơn giản +dể hiểu

20 tháng 8 2016

Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.

Đặt \(m=x+y+z\)  thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)

                                            \(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)

\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1) 

Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)

Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)

7 tháng 10 2017

 x+y=2 
<=> x=2-y(1) 
giả sử x*y≤1 
<=>(2-y)y≤1 
<=>y^2 - 2y +1≥0 
<=> (y-1)^2≥0 
<=>y≥1(2) 
từ (1),(2)=> x*y≤1 
 

7 tháng 10 2017

xy = 1 vì :

1 + 1 = 2

vậy xy là 1 nha      

9 tháng 4 2019

đợi mk làm đã

9 tháng 4 2019

Thì trả lời mau lên mk tick cho ok

9 tháng 1 2020

Tham khảo

Cho x+y= 2. CMR : x^2017 + y^2017 bé hơn hoặc bằng x^2018+ y^2018 

16 tháng 1 2020

Đáp án đây bạn https://hoidap247.com/cau-hoi/196616