K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số dãy ghế ban đầu trong phòng là x(dãy)(ĐK: x>4)

Số dãy ghế lúc sau là x+1(dãy)

Số người ngồi trên 1 dãy ghế lúc đầu là \(\dfrac{320}{x}\left(người\right)\)

Số người ngồi trên 1 dãy ghế lúc sau là \(\dfrac{420}{x+1}\left(người\right)\)

Theo đề, ta có: \(\dfrac{420}{x+1}-\dfrac{320}{x}=4\)

=>\(\dfrac{420x-320x-320}{x\left(x+1\right)}=4\)

=>4x(x+1)=100x-320

=>x(x+1)=25x-80

=>x^2+x-25x+80=0

=>x^2-24x+80=0

=>(x-4)(x-20)=0

=>\(\left[{}\begin{matrix}x=4\left(loại\right)\\x=20\left(loại\right)\end{matrix}\right.\)

Vậy: ban đầu có 20 dãy ghế

17 tháng 10 2021

80 đk

10 tháng 12 2021

Gọi số dãy ghế ban đầu là x,

số ghế trong mỗi dãy ban đầu là y (x, y ∈ N*)

Ta có: x.y=320 ⇒ y=\(\dfrac{320}{x}\) 

Nhưng vì số người hôm đó tới dự là 420 người do đó phải đặt thêm 1 dãy ghế và thu xếp để mỗi dãy ghế được thêm 4 người ngồi mới đủ nên ta có:

( x+1).( y+4)=420

⇔ ( x+1).( \(\dfrac{320}{x}\)x +4)= 420

⇔ 320+4x+\(\dfrac{320}{x}\) +4=420

⇒ 320x+4x²+320+4x=420x

⇔ 4x²-96x+320=0

⇔ x=20 hoặc x=4

Nếu x=20 thì y=16

Nếu x=4 thì y=80

Vậy trong phòng lúc đầu có 20 dãy ghế, mỗi dãy có 16 ghế

hoặc 4 dãy ghế, mỗi dãy có 80 ghế.

NM
26 tháng 1 2021

gọi x và y lần lượt là số dãy ghs và số ghế trong một dãy

Do đó x,y là hai số tự nhiên khác 0

ta có hệ sau 

\(\hept{\begin{cases}x.y=320\\\left(x+1\right)\left(y+4\right)=420\end{cases}\Leftrightarrow}\hept{\begin{cases}x.y=320\\xy+4x+y+4=420\end{cases}\Leftrightarrow\hept{\begin{cases}x.y=320\\4x+y=96\end{cases}}}\)

Rút \(y=96-4x\Rightarrow96x-4x^2=320\Leftrightarrow\orbr{\begin{cases}x=20\Rightarrow y=16\\x=4\Rightarrow y=40\end{cases}}\)

Vậy có hai khả năng xảy ra như trên

13 tháng 12 2017

Câu hỏi tương tự nha bạn

15 tháng 2 2018

Gọi số dãy ghế ban đầu là a [a>0 ,a thuộc N]

=>Số người trên mỗi dãy ghế là : \(\frac{70}{a}\)

Khi bớt đi 2 dãy ghế => Số dãy ghế còn lại là : a-2

Số người trên mỗi dãy ghế lúc đó là : \(\frac{70}{a-2}\)

Theo bài ra ta có : \(\frac{70}{a}+4=\frac{70}{a-2}\)

=> 70[a-2]+4a[a-2]=70a =>35[a-2]+2a[a-2]=35a

=> 35a-70+2a\(^2\)-4a=35a

=> 2a\(^2\)-4a-70=0

=> \(a^2-2a-35=0=>a^2-2a+1-36=0=>\left[a-1^2\right]=36=6^2\). Có 2 trường hợp

Trường hợp 1 : a-1 = -6 => a = - 5 [loại]

Trường hợp 2 : a - 1 = 6 => a = 7

Còn đây bạn làm nốt tiếp

Vậy phòng họp lúc đầu có 7 dãy ghế và 10 người

12 tháng 2 2018

co ai ko giup mk hum

6 tháng 6 2017

1 dãy là bao nhiêu ghế

26 tháng 4 2019

đoán xem xme \

1 tháng 6 2015

 Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10

17 tháng 5 2021

em học lớp 5 nên ko bt đâu ạ

9 tháng 1 2022

             số ghế1 hàng      số ghế 1 dãy      tổng số ghế

dự tính   X                             \(\dfrac{360}{x}\)                  360

thực tế   X+1                         \(\left(\dfrac{360}{X}\right)+1\)      400

gọi số ghế của 1 hàng là x (dự tính)

=> số ghế của 1 dãy là \(\dfrac{360}{x}\)

thêm 1 hàng theo thực tế X+1

mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)

tổng số ghế thực tế là 400 nên ta có 

\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)

=> x=24

vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15