A=3^x+3^x+1
B=5^x+5^X+2
C=5^2x-3-2.5^2=5^2.3
D=3^x+2+3^x=810
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chi lam duoc cau c thoi
suy ra 2x-1=5 hoac 2x-1=-5
2x=6 2x=-4
x=3 x=-2
vay x=3 hoac x=-2
a. 3/4.x+1/3=-1/2
=>3/4.x=-1/2-1/3=-5/6
=>x=-5/6 chia 3/4=-10/9
b. -x/4=-9/x =>-x*x=4*-9
=>-2x=-36 =>x=18
c./2x-1/=5
=> 2x-1=5 =>2x=5+1=6 =>x=3
hoặc 2x-1=-5 =>2x=-5+1=-4 =>x=-2
d,e: Sai đề rồi
a)
Đặt \(\frac{x}{2}=t\Rightarrow 3^{2t}-4=5^t\)
\(\Leftrightarrow 9^t-5^t=4\)
TH1: \(t>1\Rightarrow 9^t-5^t< 4^t\)
\(\Leftrightarrow 9^t< 4^t+5^t\)
\(\Leftrightarrow 1< \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t\) \((*)\)
Ta thấy vì \(\frac{4}{9};\frac{5}{9}<1 \), do đó với \(t>1\Rightarrow \left\{\begin{matrix} \left(\frac{4}{9}\right)^t< \frac{4}{9}\\ \left(\frac{5}{9}\right)^t< \frac{5}{9}\end{matrix}\right.\)
\(\Rightarrow \left(\frac{4}{9}\right)^t+\left(\frac{5}{9}\right)^t< \frac{4}{9}+\frac{5}{9}=1\) (mâu thuẫn với (*))
TH2: \(t<1 \) tương tự TH1 ta cũng suy ra mâu thuẫn
do đó \(t=1\Rightarrow x=2\)
b)
Ta có: \(5^{2x}=3^{2x}+2.5^x+2.3^x\)
\(\Leftrightarrow (5^{2x}-2.5^{x}+1)=3^{2x}+2.3^x+1\)
\(\Leftrightarrow (5^x-1)^2=(3^x+1)^2\)
\(\Leftrightarrow (5^x-3^x-2)(5^x+3^x)=0\)
Dễ thấy \(5^x+3^x>0\forall x\in\mathbb{R}\Rightarrow 5^x-3^x-2=0\)
\(\Leftrightarrow 5^x-3^x=2\)
\(\Leftrightarrow 5^x=3^x+2\)
Đến đây ta đưa về dạng giống hệt phần a, ta thu được nghiệm \(x=1\)
c)
\((2-\sqrt{3})^x+(2+\sqrt{3})^x=4^x\)
\(\Leftrightarrow \left(\frac{2-\sqrt{3}}{4}\right)^x+\left(\frac{2+\sqrt{3}}{4}\right)^x=1\)
TH1: \(x>1\)
Vì \(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1;x> 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x< \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x< \frac{2+\sqrt{3}}{4}\)
\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x<\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)
TH2: \(x<1 \)
\(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}<1; x< 1 \Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x> \frac{2-\sqrt{3}}{4};\left ( \frac{2+\sqrt{3}}{4} \right )^x> \frac{2+\sqrt{3}}{4}\)
\(\Rightarrow \left ( \frac{2-\sqrt{3}}{4} \right )^x+\left ( \frac{2+\sqrt{3}}{4} \right )^x>\frac{2-\sqrt{3}}{4}+\frac{2+\sqrt{3}}{4}=1\) (vô lý)
Do đó \(x=1\)
a, 7\(x\) - \(x\) = 521 : 519 + 3.22.7
6\(x\) = 53 + 3.4.7
6\(x\) = 125 + 12.7
6\(x\) = 125 + 84
6\(x\) = 209
\(x\) = 209 : 6
\(x\) = \(\dfrac{209}{6}\)
b; 11\(x\) - 7\(x\) + 34 : 33 = 54 + 2\(x\)
4\(x\) + 3 = 625 + 2\(x\)
4\(x\) - 2\(x\) = 625 - 3
2\(x\) = 622
\(x\) = 622 : 2
\(x\) = 311
c; 75 - 5.(\(x-3\))3 = 700
5.(\(x\) - 3)3 = 700 - 75
5.(\(x\) - 3)3 = - 625
(\(x\) - 30)3 = - 625 : 5
(\(x\) - 30)3 = - 125
(\(x-3\))3 = (-5)3
\(x\) - 3 = - 5
\(x\) = - 5 + 3
\(x\) = -2
d, 3.(2\(x\) - 1)2 = 75
(2\(x\) - 1)2 = 75 : 3
(2\(x\) - 1)2 = 25
\(\left[{}\begin{matrix}2x-1=-5\\2x-1=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-5+1\\2x=5+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-4\\2x=6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
\(x^{10}=x\Leftrightarrow x^{10}-x=0\Leftrightarrow x.\left(x^9-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^9-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\\ \)
`#040911`
`a,`
`15 + 25 \div (2x - 1) = 20`
`\Rightarrow 25 \div (2x - 1) = 20 - 15`
`\Rightarrow 25 \div (2x - 1) = 5`
`\Rightarrow 2x - 1 = 25 \div 5`
`\Rightarrow 2x - 1 = 5`
`\Rightarrow 2x = 6`
`\Rightarrow x = 3`
Vây, `x = 3.`
`b,`
\(3^{x-1}+2\cdot3^x=21\)
`\Rightarrow 3^x \div 3 + 2. 3^x = 21`
`\Rightarrow 3^x . \frac{1}{3} + 2. 3^x = 21`
`\Rightarrow 3^x . (\frac{1}{3} + 2) = 21`
`\Rightarrow 3^x . \frac{7}{3} = 21`
`\Rightarrow 3^x = 21 \div \frac{7}{3}`
`\Rightarrow 3^x = 9`
`\Rightarrow 3^x = 3^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
`c,`
\(2^{x-3}+2^{x+1}=17\)
`\Rightarrow 2^x \div 2^3 + 2^x . 2 = 17`
`\Rightarrow 2^x . \frac{1}{8} + 2^x . 2 = 17`
`\Rightarrow 2^x . (\frac{1}{8} + 2) = 17`
`\Rightarrow 2^x . \frac{17}{8} = 17`
`\Rightarrow 2^x = 17 \div \frac{17}{8}`
`\Rightarrow 2^x = 8`
`\Rightarrow 2^x = 2^3`
`\Rightarrow x = 3`
Vậy, `x = 3`
`d,`
\(5^x-5^{x-1}=20\)
`\Rightarrow 5^x - 5^x \div 5 = 20`
`\Rightarrow 5^x - 5^x . \frac{1}{5} = 20`
`\Rightarrow 5^x . (1 - \frac{1}{5} = 20`
`\Rightarrow 5^x . \frac{4}{5} = 20`
`\Rightarrow 5^x = 20 \div \frac{4}{5}`
`\Rightarrow 5^x = 25`
`\Rightarrow 5^x = 5^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
\(a.25:\left(2x-1\right)=5\)
\(2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(b.3^x:3+2.3^x=21\)\(\Leftrightarrow3^x.\dfrac{1}{3}+2.3^x=21\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}+2\right)=21\)
\(\Leftrightarrow3^x.\dfrac{7}{3}=21\)
\(\Leftrightarrow3^x=9\Leftrightarrow x=2\)
\(c.2^x:2^3+2^x.2=17\Leftrightarrow2^x.\dfrac{1}{8}+2^x.2=17\)
\(\Leftrightarrow2^x.\dfrac{17}{8}=17\Leftrightarrow2^x=8\Leftrightarrow x=3\)
\(d.5^x-5^x:5=20\Leftrightarrow5^x-5^x.\dfrac{1}{5}=20\)
\(\Leftrightarrow5^x\left(1-\dfrac{1}{5}\right)=20\Leftrightarrow5^x=20:\dfrac{4}{5}\Leftrightarrow5^x=25\Leftrightarrow x=2\)
a) (9x+2).3=60
9x+2 = 60:3
9x+2 = 20
9x = 20-2
9x = 18
x = 2
c) \(44-7x=3^4:3^2\)
\(44-7x=9\)
\(7x=44-9\)
\(7x=35\)
\(x=5\)
Hok tốt nha^^