\(\frac{9}{4}+\frac{9}{28}+\frac{9}{70}+\frac{9}{130}+...+\frac{9}{418}+\frac{9}{550}\) = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 9/4 + 9/28 +.. + 9/550
A = 9/1.4 + 9/4.7 +... + 9/22.25
A = 3( 3/1.4 + 3/4.7 + .. + 3/22.25)
A = 3 . (1/1 - 1/4 + 1/4 - 1/7 + ... +1/22 - 1/25)
A = 3 (1 - 1/25)
A = 3. 24 / 25
A = 72/25
\(\frac{3}{4}+\frac{3}{28}+\frac{3}{70}+\frac{3}{130}+....+\frac{3}{418}+\frac{3}{550}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{19.22}+\frac{3}{22.25}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
Nhớ k cho m nhé!
a)
\(\frac{{28}}{9} \cdot 0,7 + \frac{{28}}{9} \cdot 0,5 = \frac{{28}}{9}.\left( {0,7 + 0,5} \right)\)
b)
\(\begin{array}{l}\frac{{36}}{{13}}:4 + \frac{{36}}{{13}}:9\\ = \frac{{36}}{{13}}.\frac{1}{4} + \frac{{36}}{{13}}.\frac{1}{9}\\ = \frac{{36}}{{13}}.\left( {\frac{1}{4} + \frac{1}{9}} \right)\\ = \frac{{36}}{{13}}.\frac{{13}}{{36}} = 1\end{array}\)
\(\begin{array}{l}\frac{{36}}{{13}}:(4 + 9)\\ = \frac{{36}}{{13}}:13\\ = \frac{{36}}{{13}}.\frac{1}{{13}}\\ = \frac{{36}}{{169}}\end{array}\)
Suy ra \(\frac{{36}}{{13}}:4 + \frac{{36}}{{13}}:9\) \( \ne \) \(\frac{{36}}{{13}}:(4 + 9)\).
a) $\frac{4}{7} = \frac{{4 \times 2}}{{7 \times 2}} = \frac{8}{{14}}$
Quy đồng mẫu số hai phân số $\frac{9}{{14}}$ và $\frac{4}{7}$ được $\frac{9}{{14}}$ và $\frac{8}{{14}}$
b) $\frac{8}{3} = \frac{{8 \times 3}}{{3 \times 3}} = \frac{{24}}{9}$
Quy đồng mẫu số hai phân số $\frac{{25}}{9}$ và $\frac{8}{3}$ được $\frac{{25}}{9}$ và $\frac{{24}}{9}$
c) $\frac{6}{7} = \frac{{6 \times 10}}{{7 \times 10}} = \frac{{60}}{{70}}$
Quy đồng mẫu số hai phân số $\frac{6}{7}$ và $\frac{9}{{70}}$ được $\frac{{60}}{{70}}$ và $\frac{9}{{70}}$
Lướt qua rồi! không phải bạn k mà ấn tượng "đừng lướt qua"
\(A=\frac{3a}{4.1}+\frac{3a}{7.4}+\frac{3a}{10.7}+\frac{3a}{13.10}+..+\frac{3a}{22.19}+\frac{3a}{25.22}=\frac{48}{25}\)
\(a.\left(\frac{3}{4.1}+\frac{3}{7.4}+\frac{3}{10.7}+\frac{3}{13.10}+..+\frac{3}{22.19}+\frac{3}{25.22}\right)=\frac{48}{25}\)
\(B=\left(\frac{3}{4.1}+\frac{3}{7.4}+\frac{3}{10.7}+\frac{3}{13.10}+..+\frac{3}{22.19}+\frac{3}{25.22}\right)\)
\(B=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+..+\frac{1}{22}-\frac{1}{25}\)
\(B=\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
\(A=a.B=\frac{24a}{25}=\frac{48}{25}\Rightarrow a=2\)
\(\frac{3a}{4}+\frac{3a}{28}+\frac{3a}{70}+...+\frac{3a}{418}+\frac{3a}{550}=\frac{48}{25}\)
\(\Rightarrow a\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{19.22}+\frac{3}{22.25}\right)=\frac{48}{25}\)
\(\Rightarrow a\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{19}-\frac{1}{22}+\frac{1}{22}-\frac{1}{25}\right)=\frac{48}{25}\)
\(\Rightarrow a\left(1-\frac{1}{25}\right)=\frac{48}{25}\)
\(\Rightarrow a.\frac{24}{25}=\frac{48}{25}\)
\(\Rightarrow a=2\)
\(A=\frac{13}{28}\left(-\frac{5}{9}-\frac{4}{9}\right)=\frac{13}{28}\left(-\frac{9}{9}\right)=\frac{13}{28}\left(-1\right)\)
=> \(A=-\frac{13}{28}\)
A= -5/9x 13/28- 13/28x 4/9
=13/28x (-5/9- 4/9)
=13/28x (-1)
=-13/28
a) $\frac{7}{9} \times \frac{{15}}{{28}} \times \frac{9}{7} = (\frac{7}{9} \times \frac{9}{7}) \times \frac{{15}}{{28}} = 1 \times \frac{{15}}{{28}} = \frac{{15}}{{28}}$
b) $\frac{9}{{32}} \times \left( {\frac{2}{3} \times \frac{{14}}{{21}}} \right) = \frac{9}{{32}} \times \left( {\frac{2}{3} \times \frac{2}{3}} \right) = \frac{9}{{32}} \times \frac{4}{9} = \frac{{36}}{{288}} = \frac{1}{8}$
= \(\frac{9}{1x4}+\frac{9}{4x7}+\frac{9}{7x10}+.........+\frac{9}{19x22}+\frac{9}{22x25}\)
= \(\frac{1}{3}x\left(\frac{9}{1}-\frac{9}{4}\right)+\left(\frac{9}{4}-\frac{9}{7}\right)x\frac{1}{3}+........+\left(\frac{9}{22}-\frac{9}{25}\right)x\frac{1}{3}\)
= \(\frac{1}{3}\left(\frac{9}{1}-\frac{9}{4}+\frac{9}{4}-\frac{9}{7}+....+\frac{9}{22}-\frac{9}{25}\right)\)
= \(\frac{1}{3}x\left(\frac{9}{1}-\frac{9}{25}\right)\)
= \(\frac{1}{3}x\frac{216}{25}\)
= \(\frac{72}{25}\)
nhớ ********** nha bn thân
\(\frac{9}{4}+\frac{9}{28}+\frac{9}{70}+\frac{9}{130}+...+\frac{9}{418}+\frac{9}{550}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{19.22}+\frac{3}{22.25}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{22}-\frac{1}{25}\right)\)
\(=3\left(1-\frac{1}{25}\right)\)
\(=3.\frac{24}{25}=\frac{72}{25}\)