Cho phương trình: \(x^2-\left(2m+1\right)x+m^2+m-1=0\). Chứng minh rằng: Có một hệ thức giữa \(2\) nghiệm không phụ thuộc vào \(m\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay m = 1 ta đc
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb khi delta' > 0
\(m-2\ne0\Leftrightarrow m\ne2\)
c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)
d.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
\(\text{Δ}=\left(2m-1\right)^2-4\cdot2\cdot\left(m-1\right)\)
\(=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2>=0\forall m\)
=>Phương trình luôn có hai nghiệm
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m+1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m-1}{2}\end{matrix}\right.\)
\(x_1+x_2+2x_1x_2\)
\(=\dfrac{-2m+1}{2}+\dfrac{2\left(m-1\right)}{2}\)
\(=\dfrac{-2m+1+2m-2}{2}=\dfrac{-1}{2}\)
=>\(x_1+x_2+2x_1x_2\) là hệ thức cần tìm
\(x^2-2\left(m+1\right)x+2m=0\left(1\right)\)
a, \(\Delta'=\left(m+1\right)^2-2m=m^2+>0\forall m\)
⇒ Phương trình có hai nghiệm phân biệt
b, Để phương trình có hai nghiệm cùng dương thì :
\(\left\{{}\begin{matrix}\Delta'>0\\S>0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2+1>0\left(luôn-đúng\right)\\2\left(m+1\right)>0\\2m>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>0\end{matrix}\right.\)\(\Leftrightarrow m>0\)
c, Theo viét \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\left(2\right)\\x_1x_2=2m\left(3\right)\end{matrix}\right.\)
Trừ vế theo vế (2) cho (3) được : \(x_1+x_2-x_1x_2=2m+2-2m=2\)
Kết luận ....
dt = (2m+1)2-4(m2 +m - 1) = 5>0 nên pt luôn có 2 nghiệm phân biệt
b) x1+x2 = 2m+1, x1.x2 = m2 +m - 1
=> (x1+x2)2 - 4(x1.x2 ) = 5 không phụ thuộc vào m
" Biển học là mênh mông , trong đó sách vở tuy quan trọng nhưng cũng là vùng biển gần bờ mà thôi " .
Trình bày suy nghĩ của em về ý kiến trên .
HELP ME !!!!!!!!!
a, Với m=2 thì phương trình (1) trở thành
x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
= m m 2 +4m +4 -4m -1
= m mũ2 +3
vì m mũ2 luôn > hoặc = 0 với mọi m
suy ra m mũ2 +3 luôn >0 với mọi m
suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)
CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM
pt : \(x^2-\left(2m+1\right)x+m^2+m-1=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(m^2+m-1\right)\\ =4m^2+4m+1-4m^2-4m+4=5>0\)
=> pt luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi ét :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m+1\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x_1+x_2\right)^2=4m^2+4m+1\\4x_1x_2=4m^2+4m-4\end{matrix}\right.\)
\(\Rightarrow4\left(x_1+x_2\right)^2-4x_1x_2=5\) ( Không phụ thuộc vào m - DPCM )
Hệ thức viet này có vẻ không đúng lắm