K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://olm.vn/hoi-dap/detail/86239356392.html

6 tháng 8 2017

a) cho ac rùi tính ac làm j nữa z bạn 

b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có 

bd chung 

góc abd = góc ebd ( bd là tia phân giác của góc abc )

=> tam giác abd=tam giac ebd ( ch-gn)

6 tháng 8 2017

c) có tam giác abd = tam giácđeb( ch-gn)

=> ab=eb( 2 cạnh tương ứng )

=> tam giác abe cân tại b ( dhnb tam giác cân )

d)có tam giác abd = tam giácđeb( ch-gn)

=> ad=ed(  2 cạnh tương ứng ) (1)

có tam giác dec vuông tại e

=> ed<dc( dc là cạnh huyền ) (2)

(1)(2)=> ad<dc

Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.a) Tính độ dài BC, biết AB= 6cm, AC= 8cmb) chứng minh tam giác ABD=tam giác EBDc) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại Fa) C/m tứ giác AEMF là hình...
Đọc tiếp

Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.
a) Tính độ dài BC, biết AB= 6cm, AC= 8cm
b) chứng minh tam giác ABD=tam giác EBD
c) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.
Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F
a) C/m tứ giác AEMF là hình chữ nhật 
b) tinh độ dài BC, AM
c) trên tia đối của tia MA lấy điểm H sao cho MA= MH. C/m ABHC là hình chữ nhật
d) gọi điểm D là điểm đối xứng của M qua F. C/m ADCM là hình vuông
e) tìm thêm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông.
Bài 3: Cho tam giác ABC cân tại A. gọi M là trung điểm của BC, N là điểm đối xứng với A qua M
a) C/m tứ giác ABNC là hình thoi 
b) Qua điểm A, vẽ đường thẳng song song với BC, cắt NC tại D. C/m AD=BC
c) kẻ đường cao AH của tam giác ADN, tính độ dài AH, biết AD= 9cm, AN=12cm
Bài 4 cho tam giác ABC cân tại A có AM là đường phân giác ( M thuộc BC). Từ M lần lượt kẻ các đường thẳng song song với AB và AC, Các đường thẳng này cắt AC tại N, Cắt AB tại E.
a) tứ giác AEMN là hình gì ? vì sao ?
b) gọi D là điểm đối xứng của M qua N. C/m tứ giác ADMB là hình bình hành 

c) c/m tứ giác ADCM là hình chữ nhật 
d) tam giác ABC có thêm điều kiện gì để tứ giác ADCM là hình vuông? 

1
18 tháng 12 2023

Bài 3:

a: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

=>ABNC là hình bình hành

Hình bình hành ABNC có AB=AC

nên ABNC là hình thoi

b: Ta có:ABNC là hình thoi

=>AB//NC

mà D\(\in\)NC

nên AB//CD

Xét tứ giác ABCD có

AB//CD

AD//BC

Do đó: ABCD là hình bình hành

=>AD=BC

c: Xét ΔADN vuông tại A có \(DN^2=AD^2+AN^2\)

=>\(DN^2=9^2+12^2=225\)

=>\(DN=\sqrt{225}=15\left(cm\right)\)

Xét ΔAND vuông tại A có AH là đường cao

nên \(AH\cdot ND=AN\cdot AD\)

=>\(AH\cdot15=9\cdot12=108\)

=>AH=108/15=7,2(cm)

Bài 4:

a: Xét tứ giác AEMN có

AE//MN

AN//ME

Do đó: AEMN là hình bình hành

Hình bình hành AEMN có AM là phân giác của góc EAN

nên AEMN là hình thoi

b: Ta có; ΔABC cân tại A

mà AM là đường phân giác

nên AM\(\perp\)BC và M là trung điểm của BC

Xét ΔABC có

M là trung điểm của BC

MN//AB

Do đó: N là trung điểm của AC

Xét ΔABC có

M,N lần lượt là trung điểm của BC,CA

=>MN là đường trung bình của ΔABC

=>MN//AB và MN=AB/2

Ta có: MN=AB/2

MN=MD/2
Do đó: AB=MD

Xét tứ giác ABMD có

DM//AB

DM=AB

Do đó: ABMD là hình bình hành

c: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

=>AMCD là hình bình hành

Hình bình hành AMCD có \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

d: Để ADCM là hình vuông thì AM=CM

=>AM=BC/2

Xét ΔABC có

AM là đường trung tuyến

\(AM=\dfrac{BC}{2}\)

Do đó: ΔABC vuông tại A

=>\(\widehat{BAC}=90^0\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm

24 tháng 3 2021

 Xét ΔABD vuông tại A

       ΔEBD vuông tại E

CÓ : BD : CẠNH HUYỀN CHUNG

\(\widehat{ABD}=\widehat{EBD}\) (D LÀ TIA PHÂN GIÁC CỦA GÓC B)

⇒ΔABD= ΔEBD (CẠNH HUYỀN-CẠNH GÓC VUÔNG)

C)XÉT ΔDAI VUÔNG TẠI A

ΔDEC VUÔNG TẠI E 

CÓ: \(\widehat{A}=\widehat{E}\)(GT)

AD=CD(ΔABD= ΔEBD)

\(\widehat{ADI}=\widehat{EDC}\) (ĐỐI ĐỈNH)

⇒ΔDAI=ΔDEC (G-C-G)

⇒DI = CD 

⇒ΔIDC CÂN TẠI D 

Bổ sung đề: \(\widehat{ABC}=60^0\)

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

Xét ΔABE cân tại B có \(\widehat{ABE}=60^0\)(gt)

nên ΔABE đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔABC vuông tại A có 

\(\cos\widehat{B}=\dfrac{AB}{BC}\)

\(\Leftrightarrow BC=\dfrac{AB}{\cos60^0}=\dfrac{5}{\dfrac{1}{2}}=10\left(cm\right)\)

Vậy: BC=10cm

a: BC=10cm

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

c: ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔBAE cân tại B

d: Ta có: ΔABD=ΔEBD

nên DA=DE
hay D nằm trên đường trung trực của AE(1)

Ta có: BA=BE

nên B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

d: BK=BA+AK

BC=BE+EC

mà BA=BE và AK=EC

nên BK=BC

=>góc BKC=góc BCK

Có ai biết ko chỉ mình với ạ

 

18 tháng 3 2022

Bài 1:

a, Xét tg ABD và tg EBD, có: 

góc A= góc E(90o)

BD chung

góc ABD= góc DBE(tia phân giác)

=>tg ABD= tg EBD.

b, Ta có: tg ABD= tg DBE(cm câu a)

=>AB=BE(2 cạnh tương ứng)

=>tg ABE cân tại B.

Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.

c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)

=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o

Vì tg ABE là tg đều, nên góc A=60o.

Ta có: góc A=góc BAE+ góc AEC.

=>90o=60o+ góc AEC=30o.

=> góc AEC= góc C(=30o)

=>tg AEC cân tại E.

=>AE=EC.

Mà AE=5cm(tg đều), nên EC=5cm.

Vậy, độ dài cạnh BC là: 

BE+EC=5+5=10.

=>BC= 10cm.

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔABE có BA=BE và \(\widehat{ABE}=60^0\)

nên ΔABE đều

c: Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}\)

=>\(\dfrac{5}{BC}=cos60=\dfrac{1}{2}\)

=>\(BC=5\cdot2=10\left(cm\right)\)