Cho phân số dạng 2n-3/2n+1
- Tìm n biết giá trị phân số đó = 3/4
- Tìm số nguyên n để phân số đó là nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phân số dạng 2n-3/2n+1
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
Ta có :
\(A=\frac{2n+3}{2n-3}=\frac{2n-3+6}{2n-3}=1+\frac{6}{2n-3}\)
để A \(\in\)Z \(\Leftrightarrow\)\(1+\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)\(\frac{6}{2n-3}\)\(\in\)Z \(\Leftrightarrow\)2n - 3 \(\in\)Ư ( 6 ) = { 1 ; -1 ; 2 ; -2 ; 3 ; -3 ; 6 ; -6 }
Lập bảng ta có :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 2 | 1 | 5/2 | 1/2 | 3 | 0 | 9/2 | -3/2 |
vì n \(\in\)Z nên n = { 2 ; 1 ; 3 ; 0 }
Ta có : \(A=\frac{2n+3}{2n-3}=\frac{\left(2n-3\right)+6}{2n-3}=1+\frac{6}{2n-3}\)
Để \(A\in N\) thì \(\frac{6}{2n-3}\in N\)
\(\Rightarrow6⋮2n-3\)
\(\Leftrightarrow2n-3\inƯ_{\left(6\right)}=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
2n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2n | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
n | 2 | 1 | 2,5 | 0,5 | 3 | 0 | 4,5 | -1,5 |
Vậy ...
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
\(N=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=3+\frac{8}{2n-1}\inℤ\Leftrightarrow\frac{8}{2n-1}\inℤ\)
mà \(n\)là số nguyên nên \(2n-1\inƯ\left(8\right)\)mà \(2n-1\)là số lẻ nên
\(2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).
b: Để A nguyên thì 2n+3 chia hết cho n
=>3 chia hết cho n
=>n thuộc {1;-1;3;-3}
c: Th1: n=2
=>n+3=5(nhận)
TH2: n=2k+1
=>n+3=2k+4=2(k+2)
=>Loại
d: Gọi d=ƯCLN(2n+3;2n+5)
=>2n+5-2n-3 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>PSTG
a,n=3
b,Goi ps can tim la A
de A co gia tri nguye <=>2n-3 chia het cho 2n+1
=>2n-3-(2n+1) chia het cho 2n+1
=>2 chia het cho 2n+1
=>2n +1 thuoc uoc cua 2={+-1,+-2}
Ta co bang gia tri
2n+1 1 -1 2 -2
n 0 -1 k co k co
Bạn có thể gửi chi tiết câu a đk ko