K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\frac{x}{y}=\frac{5}{7}=\frac{x}{7}=\frac{y}{5}\) và x + y = 4,08

Áp dụng tính chất dãy tỉ số bằng nhau,ta có: 

   \(\frac{x}{7}=\frac{y}{5}=\frac{x+y}{7+5}=\frac{4,08}{12}=\frac{17}{50}\)

\(\frac{x}{7}=\frac{17}{50}\Rightarrow x=\frac{17.7}{50}=\frac{119}{50}\)

\(\frac{y}{5}=\frac{17}{50}\Rightarrow y=\frac{17.5}{50}=\frac{17}{10}\)

Vậy..

Còn 2 cách kia là j??? 

6 tháng 8 2017

a, \(\frac{x}{y}=\frac{5}{7}\)và x+y=4,08

Ta có: 4,08=\(\frac{102}{25}\)

 \(\frac{x}{y}=\frac{5}{7}\Rightarrow7x=5y\)

\(\Rightarrow\frac{x}{5}=\frac{y}{7}\)và x+y=\(\frac{102}{25}\)

theo t/c dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{\frac{102}{25}}{12}=\frac{17}{50}\)

\(\Rightarrow\frac{x}{5}=\frac{17}{50}\Rightarrow x=\frac{17}{10}\)

\(\frac{y}{7}=\frac{17}{50}\Rightarrow y=\frac{119}{50}\)

vậy x=

      y=

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

1 tháng 10 2016

Bạn lần sau đăng ít thôi nhé :)

a/ \(\frac{x}{y}=5\Rightarrow\frac{x}{5}=\frac{y}{1}=\frac{x+y}{5+1}=\frac{18}{6}=3\)

=> x = 15 , y = 3

b/ \(\frac{x}{17}=\frac{y}{2}\Rightarrow\frac{2x}{34}=\frac{y}{2}=\frac{2x-y}{34-2}=\frac{64}{32}=2\)

=> x = 34, y = 4

c/ \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)

=> x = -28 , y=-12

d,e,f,g,h tương tự.

i/ \(x:y=5:6\Rightarrow\frac{x}{5}=\frac{y}{6}\)

Làm tương tự các câu còn lại.

j/ Đặt \(\frac{x}{4}=\frac{y}{7}=k\) \(\Rightarrow\begin{cases}x=4k\\y=7k\end{cases}\)

xy = 112 => 4k.7k = 112 => \(k^2=4\Rightarrow k=\pm2\)

Nếu k = 2 thì x = 8, y = 14

Nếu k = -2 thì x = -8 , y = -14

k/ \(-2x=3y\Rightarrow\frac{x}{3}=\frac{y}{-2}\)

Làm tương tự câu j.

2 tháng 10 2016

bn đăng lại ik

15 tháng 1 2017

a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3  

22 tháng 12 2019

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha

10 tháng 1 2017

a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

              \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)

Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2 x 10 = 20

      y = 2 x 15 = 30

      z = 2 x 21 = 42

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=> x = 2k ; y = 3k

=> xy = 6.k2

=> 54 = 6.k2

=> k2 = 54 : 6 = 9

=> k = 3 hoặc k = -3

=> x =  3 x 2=6 hoặc x =( -3) x 2 = -6

     y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9

10 tháng 1 2017

\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)  \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

\(\text{Áp dụng tính chất DTSBN có}\)

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)

\(\text{Vậy }x=20;y=30;z=42\)

\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(\text{Theo đề, ta có}\)

\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)

\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\)    \(y=3.3=9\text{ hoặc }y=-3.3=-9\) 

\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)

         \(\text{với k=-3\Rightarrow x=-6;y=-9}\)

23 tháng 7 2017

Đặt x/2 là k ; y/5 là k

Ta có x=2.k ; y =5.k 

Suy ra x.y =2k.5k

            90 = 10. k bình phương

           90 : 10 = k bình phương

            9 = k  bình phương

Ta có 3 và -3 bình phương sẽ bằng 9

Rồi tới đây bạn tự làm nhé xét hai trường hợp vớ k là 3 và -3 nha

Mik trả lời đầu đó

Nhớ cho mik nha

23 tháng 7 2017

Giải

Gọi \(\frac{x}{2}\)= \(\frac{y}{5}\)= a

Ta có: +\(\frac{x}{2}\)= a

          => x = 2a

          + \(\frac{y}{5}\)= a

          => y = 5a

Ta có: xy = 90

          => 2a.5a= 90

           = 10a2= 90

           => a2=90:10=9

           => a = \(\sqrt{9}\) hoặc -\(\sqrt{9}\)

                a = 3 hoặc -3

TH1: a = 3

        => + x=2a=2.3=6

        => + y=5a=2.5=15

TH2: a = -3

        => + x=2a=2(-3)=-6

        => + y=5a=2(-5)=-15

Vậy TH1: a=6:b=15

       TH2: a=-6:b=-15

29 tháng 10 2017

a) x/5=y/2

= x+y/5+2=21/7=3

=> x/5=3=>x=15

    y/2=3=>x=6

29 tháng 10 2017

1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

\(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)

\(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)

c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)

*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)

*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)

4 tháng 10 2016

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

4 tháng 10 2016

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5