cho parabol(P) y=x2 và đường thẳng (d) y=2x+m+3' Tim m để (d) cắt Oy tại điểm có tung độ bằng 8. Khi đó hãy tìm tọa độ giao điểm của (d) và (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)
Thay x = −1; y = 5 vào hàm số y = (m – 1)x2 ta được:
(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6
Vậy m = 6 là giá trị cần tìm
Đáp án cần chọn là: C
Vì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung nên phương trình sẽ có 2 nghiệm trái dấu
PT có 2 nghiệm trái dấu thì \(\left\{{}\begin{matrix}\Delta'>0\\P< 0\end{matrix}\right.\)
PT hoành độ giao điểm giữa ( P ) và ( d ) là \(x^2-2x+m-9=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(m-9\right)>0\\P=m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-m+10>0\\m-9< 0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}m< 10\\m< 9\end{matrix}\right.\\ \Leftrightarrow m< 9\)
Vậy m < 9 thì đường thẳng (d) cắt (P) tại hai điểm nằm về phía của trục tung
Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$
$\Leftrightarrow 0=2.1-m+3=5-m$
$\Leftrightarrow m=5$
b.
PT hoành độ giao điểm:
$x^2-(2x-m+3)=0$
$\Leftrightarrow x^2-2x+m-3=0(*)$
Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi:
$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
$\Rightarrow x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
parabol (P): y = x 2 ; đường thẳng (d): y = 2x + m (m là tham số).
a) phương trình hoành độ giao điểm của (P) và (d) là:
x 2 = 2x + m ⇔ x 2 - 2x - m = 0
Δ'= 1 + m
(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm
⇔ Δ'= 1 + m = 0 ⇔ m = -1
Khi đó hoành độ giao điểm là x = 1
Phương trình hoành độ giao điểm:
\(x^2=2x+a\Leftrightarrow x^2-2x-a=0\) (1)
d và (P) không có điểm chung khi và chỉ khi (1) vô nghiệm
\(\Leftrightarrow\Delta'=1+a< 0\Rightarrow a< -1\)
Phương trình hoành độ giao điểm là:
\(x^2=2x+a\)
\(\Leftrightarrow x^2-2x-a=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-a\right)=4a+4\)
Để phương trình vô nghiệm thì 4a+4<0
hay a<-1
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=2x+m\Leftrightarrow x^2-2x-m=0\) (1)
(d) cắt (P) tại 2 điểm pb khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=1+m>0\Rightarrow m>-1\)
\(\Rightarrow\) Số nguyên m nhỏ nhất là \(m=0\)
a) (d) đi qua \(A\left(1;5\right)\Rightarrow5=2m+2m-3\Rightarrow4m=8\Rightarrow m=2\)
\(\Rightarrow y=4x+1\)
b) pt hoành độ giao điểm \(x^2-2mx-2m+3=0\)
Để (d) tiếp xúc với (P) thì pt có nghiệm kép \(\Delta=0\)
\(\Delta=\left(2m\right)^2+8m-12=4m^2+8m-12\)
\(\Rightarrow4m^2+8m-12=0\Rightarrow m^2+2m-3=0\Rightarrow\left(m-1\right)\left(m+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
Vì đường thẳng (d) cắt Oy tại điểm có tung độ bằng 8
Nên m+3=8⇔ m=5
Theo pt hoành độ giao điểm của (d) và (P)
Ta có:x2=2x+8x2=2x+8
⇔x2−2x−8=0x2−2x−8=0
Δ′=(−1)2−(−8)=9Δ′=(−1)2−(−8)=9
√Δ′=√9=3>0Δ′=9=3>0
Vậy pt có 2 nghiệm pb
x1=1+31=41+31=4
x2=1−31=−21−31=−2
Với x =4 thì y=x2=42=16
Với x =-2 thì y=x2=(-2)2=4