Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, trên tia đối của tia IM lấy điểm K sao cho IK=IM
a) chứng minh AMCK là hình thoi
b) Gọi O là trung điểm của AM. Chứng minh AKMB là hình bình hành Từ đó suy ra 3 điểm B,O,K thẳng hàng
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét tứ giác AMCK có
I là trung điểm chung của AC và MK
=>AMCK là hình bình hành
Hình bình hành AMCK có MA=MC
nên AMCK là hình thoi
b: AMCK là hình thoi
=>AK//MC và AK=MC
AK=MC
MB=MC
Do đó: AK=MB
AK//MC
M\(\in\)BC
Do đó: AK//MB
Xét tứ giác ABMK có
AK//BM
AK=BM
Do đó: ABMK là hình bình hành
=>AM cắt BK tại trung điểm của mỗi đường
mà O là trung điểm của AM
nên O là trung điểm của BK
=>B,O,K thẳng hàng