Câu 1: (1.5 điểm) Cho biểu thức: a) Rút gọn biểu thức B; b) Chứng minh B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(a,ĐK:x\ge-3\\ PT\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+3}=2\\ \Leftrightarrow2\sqrt{x+2}=2\\ \Leftrightarrow\sqrt{x+2}=1\\ \Leftrightarrow x+2=1\\ \Leftrightarrow x=-1\left(tm\right)\\ b,\Leftrightarrow\sqrt{\left(2x-3\right)^2}=2017\Leftrightarrow\left|2x-3\right|=2017\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=2017\\3-2x=2017\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1010\\x=-1007\end{matrix}\right.\)
Câu 3:
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}< 0,\forall x\left(-3< 0;\sqrt{x}+3>0\right)\\ \Leftrightarrow x\in\varnothing\)
\(a,A=7\sqrt{5}+6\sqrt{5}-5\sqrt{5}-6\sqrt{5}=2\sqrt{5}\\ b,B=12-5\cdot2=2\\ c,C=\left[2-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\right]\left[2+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}+1}\right]\\ C=\left(2-\sqrt{7}\right)\left(2+\sqrt{7}\right)=4-7=-3\)
Câu 1:
a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)
\(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)
\(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)
\(=2.\dfrac{x}{x-1}\)
\(=\dfrac{2x}{x-1}\)
Câu 1:
ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)
a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)
b) Để A nguyên thì \(2x⋮x-1\)
\(\Leftrightarrow2x-2+2⋮x-1\)
mà \(2x-2⋮x-1\)
nên \(2⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)
Biểu thức không hiển thị. Bạn xem lại đề.