Cho ∆ABC vuông tại A, đường cao AH. Vẽ đường tròn (A,AH)
a) Chứng minh: BC là tiếp tuyến đường tròn tâm A.
b) Từ H kẻ dây HI vuông góc với AB. Chứng minh: Bi là tiếp tuyến đường tròn (A)
c) Kẻ đường kính IK của đường tròn (A). Chứng minh Bi + CK=BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet (O) có
ΔAHB nội tiếp
AB là đường kính
Do đo: ΔAHB vuông tại H
=>AH vuông góc với BC
AB^2=BC*BH
b: ΔOAD cân tại O
mà OC là đường cao
nên OC là phân giác của góc AOD
Xét ΔOAC và ΔODC có
OA=OD
góc AOC=góc DOC
OC chung
Do đó: ΔOAC=ΔODC
=>góc ODC=90 độ
=>CD là tiếp tuyến của (O)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)
\(\Leftrightarrow AH^2=\dfrac{144}{25}\)
hay \(AH=\dfrac{12}{5}=2.4\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)
hay BH=1,8
Vậy: AH=2,4; BH=1,8
b) Xét (A;AH) có
AH là bán kính
CH⊥AH tại H(gt)
Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
hay CB là tiếp tuyến của (A;AH)(đpcm)
c)
1) Xét (A) có
CH là tiếp tuyến có H là tiếp điểm(cmt)
CK là tiếp tuyến có K là tiếp điểm(gt)
Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)
Xét (A) có
AH là bán kính
BH⊥AH tại H(gt)
Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)
Ta có: BH+CH=BC(H nằm giữa B và C)
mà BH=BI(cmt)
và CH=CK(cmt)
nên BC=BI+CK(đpcm)
2) Xét (A) có
BH là tiếp tuyến có H là tiếp điểm(cmt)
BI là tiếp tuyến có I là tiếp điểm(gt)
Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAI}=2\cdot\widehat{HAB}\)
Xét (A) có
CK là tiếp tuyến có K là tiếp điểm(gt)
CH là tiếp tuyến có H là tiếp điểm(cmt)
Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)
⇒\(\widehat{HAK}=2\cdot\widehat{CAH}\)
Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)
mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)
và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)
nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)
hay K,A,I thẳng hàng(đpcm)
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: Xét (A) có
BH,BD là các tiếp tuyến
Do đó: BH=BD và AB là phân giác của góc HAD
Xét (A) có
CE,CH là các tiếp tuyến
Do đó: CE=CH và AC là phân giác của góc HAE
c: BD+CE
=BH+CH
=BC
d: AB là phân giác của góc HAD
=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)
AC là phân giác của góc HAE
=>\(\widehat{HAE}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{HAD}+\widehat{HAE}=\widehat{EAD}\)
=>\(\widehat{EAD}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)
=>\(\widehat{EAD}=2\cdot\widehat{BAC}=180^0\)
=>E,A,D thẳng hàng
a: Xét (A;AH) có
AH là bán kính
BC\(\perp\)AH tại H
Do đó: BC là tiếp tuyến của (A;AH)
b: ΔAHI cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAI
Xét ΔAHB và ΔAIB có
AH=AI
\(\widehat{HAB}=\widehat{IAB}\)
AB chung
Do đó: ΔAHB=ΔAIB
=>\(\widehat{AHB}=\widehat{AIB}=90^0\)
=>BI là tiếp tuyến của (A;AH)
c:
\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)
=>\(\widehat{HAC}=90^0-\widehat{HAB}\)
\(\widehat{KAH}+\widehat{HAI}=180^0\)(hai góc kề bù)
=>\(\widehat{KAH}+2\cdot\widehat{BAH}=180^0\)
=>\(\widehat{KAH}=180^0-2\cdot\widehat{BAH}=2\left(90^0-\widehat{BAH}\right)=2\cdot\widehat{CAH}\)
=>AC là phân giác của góc KAH
Xét ΔAHC và ΔAKC có
AH=AK
\(\widehat{HAC}=\widehat{KAC}\)
AC chung
Do đó: ΔAHC=ΔAKC
=>CH=CK
CH+HB=CB
mà CH=CK và BH=BI
nên CK+BI=BC