Cho biểu thức 2 2 2 2 : 1 2 4 P x x x . a) Rút gọn P, b) Tìm giá trị nhỏ nhất và lớn nhất của P với 1 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}\)ĐKXĐ : \(x\ne0\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right)x=\frac{3-4x}{x\left(x^2+1\right)}.x\)
\(=\frac{3x-4x^2}{x\left(x^2+1\right)}=\frac{x\left(3-4x\right)}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b, Theo bài ra ta có : \(\left|x-2\right|=2\)
\(\Leftrightarrow x-2=\pm2\Leftrightarrow x=4;0\)
Thay x = 0 vào phân thức trên : \(\frac{3-4.0}{0^2+1}=\frac{3}{1}=3\)( ktm vì ĐKXĐ : x khác 0 )
Thay x =4 vào phân thức trên : \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
Vậy \(A=-\frac{13}{17}\)
a) ĐKXĐ : x3 + x \(\ne0\)
=> x(x2 + 1) \(\ne0\)
=> \(\hept{\begin{cases}x\ne0\\x^2+1\ne0\end{cases}}\)
\(A=\left(\frac{3}{x^3+x}-\frac{4}{x^2+1}\right):\frac{1}{x}=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4}{x^2+1}\right):\frac{1}{x}\)
\(=\left(\frac{3}{x\left(x^2+1\right)}-\frac{4x}{x\left(x^2+1\right)}\right).x=\frac{\left(3-4x\right).x}{x\left(x^2+1\right)}=\frac{3-4x}{x^2+1}\)
b) Khi |x - 2| = 2
=> \(\orbr{\begin{cases}x-2=2\\x-2=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Khi x = 0 => A = \(\frac{3-4.0}{0^2+1}=\frac{-1}{1}=-1\)
Khi x = 4 => A = \(\frac{3-4.4}{4^2+1}=\frac{3-16}{16+1}=\frac{-13}{17}\)
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được