K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2023

loading...

a) Ta có:

∠ABD = ∠CDE = 60⁰ (gt)

Mà ∠ABD và ∠CDE là hai góc so le trong

⇒ AB // CD

b) Vẽ tia Am là tia đối của tia AB

Do AB // CD

⇒ ∠mAC = ∠ACD (so le trong)

Mà ∠mAC + ∠BAC = 180⁰ (kề bù)

⇒ ∠ACD + ∠BAC = 180⁰

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét hai tam giác vuông ABC và ADC có: AB = AD, AC chung.

Nên \(\Delta ABC = \Delta ADC\) (cạnh huyền - cạnh góc vuông) nên \(\widehat {ACB} = \widehat {ACD}\) (2 góc tương ứng)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)      Xét \(\Delta ABD\) và \(\Delta CBD\)có:

DA=DC(gt)

BD chung

BA=BC

Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)

b)     Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)

Theo định lí tổng ba góc trong tam giác BCD, ta có:

\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)

Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)

\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)

22 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này

Hình

6 tháng 10 2021

a) Ta có: CD//Ey

\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)

b) Ta có: Ta có: CD//Ey

\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)

\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)

Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)

=> AB⊥BE

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Xét tam giác \(SAC\) có:

\(AC = \sqrt {S{A^2} + S{C^2} - 2.SA.SC.\cos \widehat {ASC}}  = a\sqrt 3 \)

\(SI\) là trung tuyến \( \Rightarrow SI = \frac{{\sqrt {2\left( {S{A^2} + S{C^2}} \right) - A{C^2}} }}{2} = \frac{a}{2}\)

Ta có: \(S{I^2} + A{I^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = {a^2} = S{A^2}\)

\( \Rightarrow \Delta SAI\) vuông tại \(I \Rightarrow SI \bot AC\)

Xét tam giác \(SAB\) vuông tại \(S\) có: \(AB = \sqrt {S{A^2} + S{B^2}}  = a\sqrt 2 \)

Xét tam giác \(SBC\) cân tại \(S\) có \(\widehat {BSC} = {60^ \circ }\) nên tam giác \(SBC\) đều. Vậy  \(BC = a\)

Xét tam giác \(ABC\) có: \(A{B^2} + B{C^2} = {\left( {a\sqrt 2 } \right)^2} + {a^2} = 3{a^2} = A{C^2}\)

\( \Rightarrow \Delta ABC\) vuông tại \(B \Rightarrow BI = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác \(SBI\) có: \(S{I^2} + B{I^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = {a^2} = S{B^2}\)

\( \Rightarrow \Delta SBI\) vuông tại \(I \Rightarrow SI \bot BI\)

Ta có:

\(\left. \begin{array}{l}SI \bot AC\\SI \bot BI\end{array} \right\} \Rightarrow SI \bot \left( {ABC} \right)\)

3 tháng 7 2023

Vì các tia �� và �� ở trong góc ���^ nên:

���^=���^−���^=90∘−���^ (1)

���^=���^−���^=90∘−���^ (2)

Từ (1) và (2), suy ra: ���^=���^.

b) Ta có

���^+���^=(���^+���^)+���^=���^+���^+���^=���^+���^=90∘+90∘=180∘

c) Từ giả thiết, ta có: ���^=2⋅���^.

Mà ���^=���^+���^+���^=2⋅���^+���^=���^+���^=���^=90∘.

Vậy ��⊥��.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì tổng 3 góc trong 1 tam giác luôn bằng 180 độ.

Xét hai tam giác AEB và DEC có:

\(\widehat {AEB} = \widehat {DEC}\)(đối đỉnh) và \(\widehat {BAC} = \widehat {BDC} = {90^o}\).

Suy ra: \(\widehat {ABE} = \widehat {DCE}\) 

Xét 2 tam giác AEB và DEC có:

\(\widehat {BAC} = \widehat {BDC} (= {90^o}\))

\(AB=DC\) (gt)

\(\widehat {ABE} = \widehat {DCE}\) (cmt)

=>\(\Delta AEB = \Delta DEC\)(g.c.g)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 70^\circ  + 80^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 30^\circ \end{array}\)

Xét tam giác ABC và tam giác PMN có:

\(\begin{array}{l}\widehat B = \widehat M = 80^\circ \\\widehat C = \widehat N = 30^\circ \end{array}\)

\( \Rightarrow \Delta ABC \backsim \Delta PMN\) (g-g)

\( \Rightarrow \frac{{AB}}{{PM}} = \frac{{BC}}{{MN}} = \frac{{CA}}{{NP}}\) (Tỉ số đồng dạng)