Cm n thuộc N* các phân số sau tối giản
a, 3n-2/4n-3
b, 4n+1/6n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là ƯCLN(n + 1, 2n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,2n+3\right)=1\)
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản.
b) Gọi d là ƯCLN(2n + 3, 4n + 8), d ∈ N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n + 3 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
\(\Rightarrow\frac{2n+3}{4n+8}\) là phân số tối giản.
c) Gọi d là ƯCLN(3n + 2, 5n + 3), d ∈ N*
\(\Rightarrow\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}15n+10⋮d\\15n+9⋮d\end{cases}}}\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(3n+2,5n+3\right)=1\)
\(\Rightarrow\frac{3n+2}{5n+3}\) là phân số tối giản.
Gọi d là ƯCLN của n + 1 , 2n + 3
=> n + 1 chia hết cho d , 2n + 3 chia hết cho d
=> 2(n + 1) chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 2 chia hết cho d , 2n + 3 chia hết cho d
=> 2n + 3 - 2n - 2 chia HẾT CHO d
=> 1 chia hết cho d
=> d = 1
Vậy n + 1/2n + 3 tối giản với mọi số n
b,c tương tự
Gọi d là ƯC của 4n + 7 và 6n + 1
Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d
<=> 12n + 21 chia hết cho d và 12n + 2 chia hết cho d
=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d
Vì 19 là số nguyên tố => d = 1
Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản
Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản
Gọi d là ƯCLN của 3n - 2 và 4n - 3
Khi đó : 3n - 2 chia hết cho d và 4n - 3 chia hết cho d
=> 12n - 8 chia hết cho d và 12n - 9 chia hết cho d
=> 12n - 8 - 12n + 9 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy phân số \(\frac{3n-2}{4n-3}\) tối giản với mọi n thuộc N*
AHIHI