Cho △ABC vuông tại a (AB<AC) có đường cao AH (H ϵ BC).Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E.
a)Chứng minh:tứ giác ADHE là hình chữ nhật
b)Gọi F là điểm đối xứng của H qua D .Chứng minh tứ giác AEDF là hình bình hành.
c)Gọi K là giao điểm của FA và HE.Chứng minh tứ giác ADEK là hình bình hành từ đó suy ra E là trung điểm HK.
d)Đường thẳng qua H và song song với DE cắt AC tại M.Chứng minh tứ giác AHMK là hình thoi
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>HD//AE và HD=AE
Ta có: HD//AE
D\(\in\)HF
Do đó: DF//AE
Ta có; HD=AE
HD=DF
Do đó: AE=DF
Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
c: Ta có: AEDF là hình bình hành
=>AF//DE
mà A\(\in\)KF
nên KA//ED
Ta có: EH//AD
E\(\in\)KH
Do đó: KE//AD
Xét tứ giác ADEK có
AD//EK
AK//DE
Do đó: ADEK là hình bình hành
=>AK=DE
mà DE=AF(AEDF là hình bình hành)
nên AF=AK
mà K,A,F thẳng hàng
nên A là trung điểm của KF
d: Xét tứ giác DHME có
DH//ME
DE//MH
Do đó: DHME là hình bình hành
=>DH=EM
mà DH=EA
nên EM=EA
=>E là trung điểm của AM
Xét tứ giác AHMK có
E là trung điểm chung của AM và HK
=>AHMK là hình bình hành
Hình bình hành AHMK có AM\(\perp\)HK
nên AHMK là hình thoi