Cho tam giác ABC nhọn có AB<AC gọi N là trung điểm của AC lây điểm D trên tia BN sao cho BN=ND
A) cmr ABCD là hình bình hành
B) kẻ AP vuông góc với BC, kẻ CQ vuông góc với AD, CMR: P,N,Q thẳng hàng
C) tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông
a: Xét tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
b: Ta có: ABCD là hình bình hành
=>AD//BC
Ta có: AD//BC
AP\(\perp\)BC
Do đó: AP\(\perp\)AD
Ta có: AP\(\perp\)AD
CQ\(\perp\)AD
Do đó: AP//CQ
ta có: AD//CB
\(Q\in\)AD
P\(\in\)BC
Do đó: AQ//CP
Xét tứ giác APCQ có
AP//CQ
AQ//CP
Do đó: APCQ là hình bình hành
=>AC cắt PQ tại trung điểm của mỗi đường
mà N là trung điểm của AC
nên N là trung điểm của PQ
=>P,N,Q thẳng hàng
c: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi(1)
Hình bình hành ABCD trở thành hình chữ nhật khi \(\widehat{ABC}=90^0\)(2)
Hình bình hành ABCD trở thành hình thoi khi BA=BC(3)
Từ (1),(2),(3) suy ra \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\BA=BC\end{matrix}\right.\)
Vẽ hộ mik hình đc ko bạn