cho các số thực a, b, c và đa thức g(x)=x^3 + ax^2 + x + 10 có 3 nghiệm phân biệt. Biết rằng mỗi nghiệm của đa thức g(x) lại là nghiệm của đa thức f(x)=x^4 + x^3 + bx^2 + 100x + c. Tính giá trị của f(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Đặt f(x)=0
=>(x-1)(x-2)=0
=>x=1 hoặc x=2
THeo đề, ta có hệ:
g(1)=0 và g(2)=0
=>\(\left\{{}\begin{matrix}2-a+b+4=0\\16-4a+2b+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a+b=-6\\-4a+2b=-20\end{matrix}\right.\)
=>a=4; b=-2
=>\(g\left(x\right)=2x^3-4x^2-2x+4\)
g(-1)=2*(-1)^3-4*(-1)^2-2*(-1)+4
=-2-4+2+4
=4
Đặt f(x)=0
=>(x-1)(x+2)=0
=>x=1 hoặc x=-2
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}1+a\cdot1^2+b\cdot1+2=0\\\left(-2\right)^3+a\cdot\left(-2\right)^2+b\cdot\left(-2\right)+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\4a-2b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-3\end{matrix}\right.\)