không thực hiện phép tính hãy chứng minh A=5 =5 mũ 2 +5 mũ 3 +..+5 mũ 11 +5 mũ 12 chia hết cho 30.
mik cần gấp,mn giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)64:2mũ5×30×4
= 64 : 32 x 30 x 4
= 240
b)3 mũ 2× 5 - 2 mũ 2×7+2 mũ 0 × 5
= 9 x 5 - 4 x 7 + 1 x 5
= 45 - 28 + 5
= 22
c)2 mũ 3-5 mũ 3÷5 mũ 2 + 12×2 mũ 2
= 8 - 125 : 25 + 12 x 4
= 8 - 5 + 48
= 51
d)2[(7-3 mũ 3÷3 mũ 2) chia 2 mũ 2 + 99]-100
= 2[( 7 - 27 : 9) : 4 + 99] - 100
= 2[4 : 4 + 99] - 100
= 2. 100 - 100
= 200 - 100
= 100
e)4[(3 + 3^7:3^4)chia 10 + 97]-300
= 4[( 3 + 3^3) : 10 + 97] - 300
= 4[ 30 : 10 + 97 ] - 300
= 4. 100 - 300
= 400 - 300
= 100
f)2^2 x 5 [(5 mũ 2 cộng 2 mũ 3) chia 11 - 2] - 3^2 x 2
= 4 x 5 [ (25 + 8 ) : 11 - 2] - 9 x 2
= 20 [ 33 : 11 - 2] - 18
= 20. 1 - 18
= 20 - 18
= 2
Ta có : 1+4+4^2+.............+4^15 có 16 số hạng
Mà 16 : 2 =8
\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)
\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13
\(\Rightarrow\)(1+4)(1+4+......+4^13)
\(\Rightarrow\)5(1+4+.....+4^13) \(⋮\)5 (ĐPCM)
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
C=(5+52)+(53+54)+.......+(511+512)
=30+52.(51+52)+.....+510.(51+52)
=30.1+52.30+.....+510.30
=30.(1+52+.........+510) chia hết cho 30
chắc là đúng ahihihi
Ta có: \(5+5^2+5^3+....+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)
\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)
\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)
Ta lại có: \(5+5^2+5^3+......+5^{12}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+......+5^{10}.31\)
\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{79}+5^{80}\right)\)
\(=30+5^2\left(5+5^2\right)+...+5^{78}\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^{78}\right)⋮30\)
\(A=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)
\(=30\left(1+5^2+...+5^{10}\right)⋮30\)