Cho đường tròn (O, R), đường kính AB. Qua điểm A và điểm B lần lượt vẽ hai đường thẳng d và d’ là hai tiếp tuyến của đường tròn. Lấy điểm M bất kì thuộc đường tròn (O) (M khác A, B). Qua M kẻ tiếp tuyến với đường tròn (O) cắt d và d’ theo thứ tự tại C và D.
a) Chứng minh A, C, M, O thuộc một đường tròn.
b) Chứng minh AC.BD không đổi khi M di chuyển trên đường tròn (O)
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp DCOD.
a: Xét tứ giác ACMO có
\(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)
=>ACMO là tứ giác nội tiếp
=>A,C,M,O cùng thuộc một đường tròn
b: Xét (O) có
CA,CM là các tiếp tuyến
Do đó: CA=CM và OC là phân giác của góc AOM
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
OC là phân giác của góc AOM
=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)
Ta có: OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{AOM}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
Xét ΔOCD vuông tại O có OM là đường cao
nên \(OM^2=MC\cdot MD\)
mà MC=CA và MD=DB
nên \(AC\cdot BD=OM=R^2\) không đổi
c: Gọi N là trung điểm của CD
Xét hình thang ACDB(AC//DB) có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
=>ON\(\perp\)AB
Vì ΔCOD vuông tại O có N là trung điểm của CD
nên N là tâm đường tròn ngoại tiếp ΔCOD
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔCOD