Cho tam ABC đều và điểm M nằm trong tam giác. Từ M kẻ các đường thẳng song song với BC,CA,AB cắt AB,BC,CA lần lượt tại N,P,Q. Xác định vị trí điểm M để NPQ là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo
3. Cho hình bình hành ABCD có AC > BD. Gọi H, K lần lượt là hình chiếu vuông góc của C trên đường thẳng AB và AD. Cmr
CH/CB=CK/CD
Tam giác CHK đồng dạng tam giác BCA
AB.AH + AD.AK= AC x AC
bài làm
Ta có: ^MPB = ^ACB = 600 => ^MPB = ^ABC hay ^MPB = ^NBP
Xét tứ giác BNMP có: MN // BP và ^MPB=^NBP => Tứ giác BNMP là hình thang cân
=> NP = BM. Tương tự: 2 tứ giác AQMN & CPMQ là htc => NQ=AM; PQ=CM
Ta thấy: \(\Delta\)NPQ là tam giác đều <=> NP=NQ=PQ <=> BM=AM=CM
<=> Điểm M cách đều 3 đỉnh A;B;C của \(\Delta\)ABC <=> M là tâm của tam giác đều ABC
Vậy khi M là tâm của \(\Delta\)ABC thì \(\Delta\)NPQ đều.
Số chia hết cho 2 và chia cho 5 dư 3 thì chữ số tận cùng là 8. Ta được a678
Để a678 chia hết cho 9 thì a=6
Số cần tìm là: 6678
ĐS: 6678
là đường trung trực nha bạn
giải chi tiết giúp mình với