K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 12 2023

Lời giải:
ĐKXĐ: $x\geq 7$ và $x\geq m$

Để TXĐ là $D=[7;+\infty)$ thì m\leq 7$

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021

18 tháng 2 2021

\(\left\{{}\begin{matrix}m\le x\\x\le3\end{matrix}\right.\Rightarrow m\le3\Rightarrow\left[m;3\right]\) 

Vay \(m\le3\) thi ham so co tap xd la 1 doan tren truc so

P/s: Ve cai truc so ra la hieu

NV
21 tháng 3 2022

Hàm có TXĐ là R khi và chỉ khi \(x^2-2mx-2m+3\ge0;\forall x\)

\(\Leftrightarrow\Delta'=m^2+2m-3\le0\)

\(\Leftrightarrow-3\le m\le1\)

28 tháng 8 2021

1.

\(3cos2x-7=2m\)

\(\Leftrightarrow cos2x=\dfrac{2m-7}{3}\)

Phương trình đã cho có nghiệm khi:

\(-1\le\dfrac{2m-7}{3}\le1\)

\(\Leftrightarrow2\le m\le5\)

28 tháng 8 2021

2.

\(2cos^2x-\sqrt{3}cosx=0\)

\(\Leftrightarrow cosx\left(2cosx-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cosx=\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\) Có 4 nghiệm \(\dfrac{\pi}{2};\dfrac{3\pi}{2};\dfrac{\pi}{6};\dfrac{11\pi}{6}\) thuộc đoạn \(\left[0;2\pi\right]\)

14 tháng 3 2021

Hàm số có tập xác định là R \(\Leftrightarrow x^2-2mx-2m+3\ge0\forall x\in R\)

\(\Leftrightarrow\Delta'=m^2+\left(2m-3\right)\leq0\)

\(\Leftrightarrow\left(m-1\right)\left(m+3\right)\le0\Leftrightarrow-3\le m\le1\).

Các gt nguyên âm của m thoả mãn là : -3; -2; -1.

Vậy có 3 gt nguyên âm của m thoả mãn.

 

Để hàm số xác định thì x-m+2>=0 và x-m+2<>1

=>x>=m-2 và x<>m-1

=>m-2<=0 và \(m-1\notin\left(0;1\right)\)

=>m<=2 và (m-1<=0 hoặc m-1>=1)

=>m=2 hoặc m<=1

NV
21 tháng 1 2021

\(\Leftrightarrow\left(m+1\right)x\ge-2m-3\)

- Với \(m=-1\) thỏa mãn

- Với \(m>-1\Rightarrow x\ge\dfrac{-2m-3}{m+1}\)

\(\Rightarrow\dfrac{-2m-3}{m+1}\le-3\) \(\Leftrightarrow\dfrac{2m+3}{m+1}-3\ge0\Leftrightarrow\dfrac{-m}{m+1}\ge0\)

\(\Rightarrow-1< m\le0\Rightarrow m=0\)

- Với \(m< -1\Rightarrow x\le\dfrac{-2m-3}{m+1}\Rightarrow\dfrac{-2m-3}{m+1}\ge-1\)

\(\Rightarrow\dfrac{2m+3}{m+1}-1\le0\Leftrightarrow\dfrac{m+2}{m+1}\le0\)

\(\Rightarrow-2\le m< -1\Rightarrow m=-2\)

Vậy \(m=\left\{-2;-1;0\right\}\)