x^2+xy-x-4=y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
(x - y)(x² + y²) - (x⁴y - xy⁴) : xy
= x³ + xy² - x²y - y³ - x³ + y³
= (x³ - x³) + (-y³ + y³) + xy² - x²y
= xy² - x²y
1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)
\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)
\(=\dfrac{1}{3}x^6y^{10}\)
2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)
\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)
\(=-\dfrac{9}{2}x^4y^4\)
3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)
\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)
\(=\dfrac{1}{54}x^7y^{14}\)
Đề là CMR $x^4-x^3y+x^2y^2-xy^3+y^4> x^2+y^2$ thì đúng hơn bạn ạ.
Lời giải:
Ta có:
$\text{VT}=(x^4+y^4-x^3y-xy^3)+x^2y^2$
$=(x-y)^2(x^2+xy+y^2)+x^2y^2\geq x^2y^2$
Mà:
$x^2y^2=\frac{x^2y^2}{2}+\frac{x^2y^2}{2}> \frac{x^2.2}{2}+\frac{2.y^2}{2}=x^2+y^2$ do $x^2> 2, y^2>2$
Do đó: $\text{VT}> x^2+y^2$ (đpcm)
a)
\(VT=\left(x^2-2^2\right)\left(x^2+4\right)\)
\(=\left(x^2-4\right)\left(x^2+4\right)\)
\(=\left(x^2\right)^2-4^2\)
\(=x^4-16\)
\(=VP\)
b)
\(VT=x^3+x^2y-x^2y-xy^2+xy^2+y^3\)
\(=x^3+y^3\)
\(=VP\)
( x + 2 )( x - 2 )( x2 + 4 )
= ( x2 - 4 )( x2 + 4 ) ( xài HĐT a2 - b2 = ( a - b )( a + b ) nhé ^^ )
= x4 - 16 ( đpcm )
( x2 - xy + y2 )( x + y )
= x3 + x2y - x2y - xy2 + xy2 + y3
= x3 + y3 ( đpcm )
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
\(x^2\) + \(xy\) - \(x\) - 4 = y
(\(x^2\) + \(xy\)) - \(x\) - y = 4
\(x\).(\(x\) + y) - (\(x\) + y) = 4
(\(x\) + y).(\(x\) - 1) = 4
4 = 22; Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
Theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (-3; 2); (-1; -1); (0; -4); (2; 2); (3; -1); (5; -4)
ca ca ca