K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=sin30=\dfrac{1}{2}\)

=>CB=R

Xét ΔCAB vuông tại C có \(CB^2+CA^2=AB^2\)

=>\(CA^2+R^2=\left(2R\right)^2=4R^2\)

=>\(CA^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Chu vi tam giác ABC là:

\(C_{ABC}=CA+CB+AB=R+2R+R\sqrt{3}=R\left(3+\sqrt{3}\right)\)

b: Xét ΔCHA vuông tại H có \(sinCAH=\dfrac{CH}{CA}\)

=>\(\dfrac{CH}{R\sqrt{3}}=sin30=\dfrac{1}{2}\)

=>\(CH=\dfrac{R\sqrt{3}}{2}\)

Ta có: DA=2CH

=>\(DA=2\cdot\dfrac{R\sqrt{3}}{2}=R\sqrt{3}\)

Ta có: \(\widehat{DAC}+\widehat{CAB}=90^0\)
=>\(\widehat{DAC}=90^0-\widehat{CAB}=90^0-30^0=60^0\)

Xét ΔADC có \(AD=AC\left(=R\sqrt{3}\right)\) và \(\widehat{DAC}=60^0\)

nên ΔADC đều

=>\(\widehat{D}=60^0\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{AOC}=180^0-2\cdot\widehat{OAC}=180^0-2\cdot30^0=120^0\)

c: Xét tứ giác DAOC có \(\widehat{DAO}+\widehat{DCO}+\widehat{ADC}+\widehat{AOC}=360^0\)

=>\(\widehat{DCO}+90^0+120^0+60^0=360^0\)

=>\(\widehat{DCO}=90^0\)

=>CD là tiếp tuyến của (O)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
27 tháng 1 2019

a, Sử dụng các tứ giác nội tiếp chứng minh được  P M O ^ = P A O ^  và  P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)

b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB

Mặt khác MP.NP = P O 2  và PO = R Þ AM.BN = R 2  (ĐPCM)

c, Ta có  A M = R 2 => M P = R 2

Mặt khác  A M = R 2 => BN = 2R => PN = 2R

Từ đó tìm được MN =  5 R 2

DMON và DAPB đồng dạng nên  S M O N S A P B = M N A B 2 = 25 16

d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R

Thể tích hình cầu đó là V =  4 3 πR 3 (đvdt)

a) Xét (O) có 

ΔABC nội tiếp đường tròn(A,B,C∈(O))

AB là đường kính(gt)

Do đó: ΔABC vuông tại C(Định lí)

b) Ta có: \(\widehat{ABC}+\widehat{CBM}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

\(\Leftrightarrow\widehat{CBM}+30^0=90^0\)

hay \(\widehat{CBM}=60^0\)

Xét ΔBMC có BM=BC(gt)

nên ΔBMC cân tại B(Định nghĩa tam giác cân)

Xét ΔBMC cân tại B có \(\widehat{CBM}=60^0\)(cmt)

nên ΔBMC đều(Dấu hiệu nhận biết tam giác đều)

c) Xét ΔOBM và ΔOCM có 

OB=OC(=R)

OM chung

BM=CM(ΔBMC đều)

Do đó: ΔOBM=ΔOCM(c-c-c)

Suy ra: \(\widehat{OBM}=\widehat{OCM}\)(hai góc tương ứng)

mà \(\widehat{OBM}=90^0\left(gt\right)\)

nên \(\widehat{OCM}=90^0\)

hay OC⊥CM tại C

Xét (O) có 

OC⊥CM tại C(cmt)

OC là bán kính(C∈(O))

Do đó: CM là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)