K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

Xét dãy \(\left(u_n\right)\) là cấp số nhân có \(\left\{{}\begin{matrix}u_1=x^2\\q=-x\end{matrix}\right.\)

\(S=x^2-x^3+x^4-x^5+...+\left(-1\right)^nx^n+...=\dfrac{x^2}{1-\left(-x\right)}=\dfrac{x^2}{x+1}\)

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự

NV
2 tháng 8 2021

- Với \(x< 3\Rightarrow f'\left(x\right)=6x^2-6\left(m+1\right)x+6m=6\left(x-1\right)\left(x-m\right)\)

\(f'\left(x\right)=0\Rightarrow6\left(x-1\right)\left(x-m\right)=0\left(1\right)\Rightarrow\left[{}\begin{matrix}x=1\\x=m\end{matrix}\right.\) có tối đa 2 cực trị khi \(x< 3\)

- Với \(x>3\Rightarrow f'\left(x\right)=n\) là hằng số \(\Rightarrow f\left(x\right)\) ko có cực trị khi \(x>3\)

\(\Rightarrow\) Hàm có đúng 3 điểm cực trị khi và chỉ khi nó đồng thời thỏa mãn:

ĐK1: \(f'\left(x\right)=0\) có 2 nghiệm pb khi \(x< 3\Rightarrow\left\{{}\begin{matrix}m< 3\\m\ne1\end{matrix}\right.\)

ĐK2: \(x=3\) là 1 cực trị của hàm số

\(\Rightarrow f\left(x\right)\) liên tục tại \(x=3\) đồng thời đạo hàm đổi dấu khi đi qua \(x=3\)

\(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)\Leftrightarrow3n+46=25-9m\Rightarrow n=-3m-7\) (2)

Mặt khác do 2 nghiệm của (1) đều nhỏ hơn 3 \(\Rightarrow\) tại lân cận trái của \(x=3\) đạo hàm luôn có dấu dương

\(\Rightarrow\) Để đạo hàm đổi dấu khi đi qua \(x=3\) thì \(f'\left(3^+\right)=n< 0\)

Thế vào (2) \(\Rightarrow-3m-7< 0\Rightarrow m>-\dfrac{7}{3}\)

\(\Rightarrow-\dfrac{7}{3}< m< 3\Rightarrow\sum m=0\)

2 tháng 7 2019

A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề

25 tháng 5 2017

b)
Với n = 1.
\(VT=B_n=1;VP=\dfrac{1\left(1+1\right)\left(1+2\right)}{6}=1\).
Vậy với n = 1 điều cần chứng minh đúng.
Giả sử nó đúng với n = k.
Nghĩa là: \(B_k=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}\).
Ta sẽ chứng minh nó đúng với \(n=k+1\).
Nghĩa là:
\(B_{k+1}=\dfrac{\left(k+1\right)\left(k+1+1\right)\left(k+1+2\right)}{6}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Thật vậy:
\(B_{k+1}=B_k+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{k\left(k+1\right)\left(k+2\right)}{6}+\dfrac{\left(k+1\right)\left(k+2\right)}{2}\)\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(k+3\right)}{6}\).
Vậy điều cần chứng minh đúng với mọi n.

25 tháng 5 2017

c)
Với \(n=1\)
\(VT=S_n=sinx\); \(VP=\dfrac{sin\dfrac{x}{2}sin\dfrac{2}{2}x}{sin\dfrac{x}{2}}=sinx\)
Vậy điều cần chứng minh đúng với \(n=1\).
Giả sử điều cần chứng minh đúng với \(n=k\).
Nghĩa là: \(S_k=\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\).
Ta cần chứng minh nó đúng với \(n=k+1\):
Nghĩa là: \(S_{k+1}=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}\).
Thật vậy từ giả thiết quy nạp ta có:
\(S_{k+1}-S_k\)\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}sin\dfrac{\left(k+2\right)x}{2}}{sin\dfrac{x}{2}}-\dfrac{sin\dfrac{kx}{2}sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.\left[sin\dfrac{\left(k+2\right)x}{2}-sin\dfrac{kx}{2}\right]\)
\(=\dfrac{sin\dfrac{\left(k+1\right)x}{2}}{sin\dfrac{x}{2}}.2cos\dfrac{\left(k+1\right)x}{2}sim\dfrac{x}{2}\)\(=2sin\dfrac{\left(k+1\right)x}{2}cos\dfrac{\left(k+1\right)x}{2}=2sin\left(k+1\right)x\).
Vì vậy \(S_{k+1}=S_k+sin\left(k+1\right)x\).
Vậy điều cần chứng minh đúng với mọi n.

2 tháng 4 2022

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

2 tháng 4 2022

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.

 

15 tháng 12 2017

\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}=\frac{x^2+n+x^2n+n^2+x^2n^2+1}{x^2-n-x^2n+n^2+n^2x^2+1}\)

\(=\frac{x^2\left(n^2+n+1\right)+n^2+n+1}{x^2\left(n^2-n+1\right)+n^2-n+1}=\frac{\left(x^2+1\right)\left(n^2+n+1\right)}{\left(x^2+1\right)\left(n^2-n+1\right)}=\frac{n^2+n+1}{n^2-n+1}\)

Vậy giá trị của biểu thức Q không phụ thuộc vào biến x