Bài 1 : Cho tam giác ABC vuông tại A ( AB<AC). Tia phân giác của góc B cắt AC tại D. Trên BC lấy E sao cho BE = BA.
a) Tính độ dài BC, biết AB= 6cm, AC= 8cm
b) chứng minh tam giác ABD=tam giác EBD
c) kẻ đường cao AH của tam giác ABC. Chứng minh tứ giác ADEH là hình thang vuông.
Bài 2: Cho tam giác ABC vuông tại A, AB= 9cm, AC=12cm, đường trung tuyến AM. Qua M vẽ ME vuông góc với AB tại E, vẽ MF vuông góc với AC tại F
a) C/m tứ giác AEMF là hình chữ nhật
b) tinh độ dài BC, AM
c) trên tia đối của tia MA lấy điểm H sao cho MA= MH. C/m ABHC là hình chữ nhật
d) gọi điểm D là điểm đối xứng của M qua F. C/m ADCM là hình vuông
e) tìm thêm điều kiện của tam giác ABC để tứ giác ADCM là hình vuông.
Bài 3: Cho tam giác ABC cân tại A. gọi M là trung điểm của BC, N là điểm đối xứng với A qua M
a) C/m tứ giác ABNC là hình thoi
b) Qua điểm A, vẽ đường thẳng song song với BC, cắt NC tại D. C/m AD=BC
c) kẻ đường cao AH của tam giác ADN, tính độ dài AH, biết AD= 9cm, AN=12cm
Bài 4 cho tam giác ABC cân tại A có AM là đường phân giác ( M thuộc BC). Từ M lần lượt kẻ các đường thẳng song song với AB và AC, Các đường thẳng này cắt AC tại N, Cắt AB tại E.
a) tứ giác AEMN là hình gì ? vì sao ?
b) gọi D là điểm đối xứng của M qua N. C/m tứ giác ADMB là hình bình hành
c) c/m tứ giác ADCM là hình chữ nhật
d) tam giác ABC có thêm điều kiện gì để tứ giác ADCM là hình vuông?
Bài 3:
a: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
=>ABNC là hình bình hành
Hình bình hành ABNC có AB=AC
nên ABNC là hình thoi
b: Ta có:ABNC là hình thoi
=>AB//NC
mà D\(\in\)NC
nên AB//CD
Xét tứ giác ABCD có
AB//CD
AD//BC
Do đó: ABCD là hình bình hành
=>AD=BC
c: Xét ΔADN vuông tại A có \(DN^2=AD^2+AN^2\)
=>\(DN^2=9^2+12^2=225\)
=>\(DN=\sqrt{225}=15\left(cm\right)\)
Xét ΔAND vuông tại A có AH là đường cao
nên \(AH\cdot ND=AN\cdot AD\)
=>\(AH\cdot15=9\cdot12=108\)
=>AH=108/15=7,2(cm)
Bài 4:
a: Xét tứ giác AEMN có
AE//MN
AN//ME
Do đó: AEMN là hình bình hành
Hình bình hành AEMN có AM là phân giác của góc EAN
nên AEMN là hình thoi
b: Ta có; ΔABC cân tại A
mà AM là đường phân giác
nên AM\(\perp\)BC và M là trung điểm của BC
Xét ΔABC có
M là trung điểm của BC
MN//AB
Do đó: N là trung điểm của AC
Xét ΔABC có
M,N lần lượt là trung điểm của BC,CA
=>MN là đường trung bình của ΔABC
=>MN//AB và MN=AB/2
Ta có: MN=AB/2
MN=MD/2
Do đó: AB=MD
Xét tứ giác ABMD có
DM//AB
DM=AB
Do đó: ABMD là hình bình hành
c: Xét tứ giác AMCD có
N là trung điểm chung của AC và MD
=>AMCD là hình bình hành
Hình bình hành AMCD có \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
d: Để ADCM là hình vuông thì AM=CM
=>AM=BC/2
Xét ΔABC có
AM là đường trung tuyến
\(AM=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)