K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Ta có: EG\(\perp\)AC

BD\(\perp\)AC

Do đó: EG//BD

Xét ΔABD có EG//BD

nên \(\dfrac{AE}{AB}=\dfrac{AG}{AD}\)

=>\(AE\cdot AD=AB\cdot AG\)(1)

Ta có: DF\(\perp\)AB

CE\(\perp\)AB

Do đó: DF//CE

Xét ΔAEC có DF//CE

nên \(\dfrac{AD}{AC}=\dfrac{AF}{AE}\)

=>\(AD\cdot AE=AC\cdot AF\)(2)

Từ (1) và (2) suy ra \(AE\cdot AD=AB\cdot AG=AC\cdot AF\)

b: AB*AG=AC*AF

=>\(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

Xét ΔABC có \(\dfrac{AG}{AC}=\dfrac{AF}{AB}\)

nên FG//BC

24 tháng 12 2018

Tương tự 4A

16 tháng 2 2021

mình thích toán nhưng ko đồng ngĩa là mình giỏi toán

16 tháng 2 2021

bạn lớp mấy vậy

a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có

CD chung

CA=CE

=>ΔCAD=ΔCED

=>CA=CE và DA=DE

=>CD là trung trực của AE

=>CD vuông góc AE

b: Xét ΔDAF vuông tại A và ΔDEB vuông tại E có

DA=DE

AF=EB

=>ΔDAF=ΔDEB

=>góc ADF=góc EDB

=>góc ADF+góc ADE=180 độ

=>E,D,F thẳng hàng

7 tháng 3 2020

a) \(\Delta\)AGE và \(\Delta\)ADB vuông có ^A chung nên  \(\Delta AGE~\Delta ADB\)

\(\Rightarrow\frac{AG}{AD}=\frac{AE}{AB}\Rightarrow AG.AB=AD.AE\)(1)

 \(\Delta\)AFD và \(\Delta\)AEC vuông có ^A chung nên\(\Delta AFD~\Delta AEC\)

\(\Rightarrow\frac{AF}{AE}=\frac{AD}{AC}\Rightarrow AF.AC=AE.AD\)(2)

Từ (1) và (2) suy ra AD.AE = AB.AG = AC.AF (đpcm)

b) Ta đã chứng minh AB.AG = AC.AF (câu a)

\(\Rightarrow\frac{AG}{AC}=\frac{AF}{AB}\)

\(\Rightarrow FG//BC\)(Theo định lý Thales đảo)

Vậy FG // BC (đpcm)

9 tháng 3 2020

Cảm ơn nhé

24 tháng 1 2019

tự vẽ hình nhé

a, xét tam giác abd và tam giác ace có

ab=ac(gt)

góc abd=góc ace(tam giác abc cân)

bd=ce(gt)

=>tam giác abd =tam giác ace (cgc)

=>ad=ae(2 cạnh tg ứng)

b,xét tam giác bdf và tam giác ceg có

bd=ce(gt)

góc fbd=góc gce(tam giác abc cân, f thuộc ab,g thuộc ac)

=>tam giác bdf=tam giác ceg(cạnh huyện góc nhọn)

=>

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm