cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại M. Trên cạnh BC lấy điểm D sao cho BA=BD
a, chứng minh góc BDM = 90 độ
b,trên tia đối của tia AB lấy điểm E sao cho AE=DC. Chứng minh E,M,D thẳng hàng
vẽ hộ mình hình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có
DE=DA
EC=AM
Do đó: ΔDEC=ΔDAM
Suy ra: DC=DM
Xét ΔABDΔABD và ΔEBDΔEBD, ta có:
AB=BE ( gt)
ABDˆ=EBDˆABD^=EBD^ ( Vì BD là tia phân giác của góc B)
BD chung
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (c-g-c)
a: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>\(\widehat{BAM}=\widehat{BDM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BDM}=90^0\)
b: Ta có; ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại M có
MA=MD
AE=DC
Do đó: ΔMAE=ΔMDC
=>\(\widehat{AME}=\widehat{DMC}\)
mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{EMC}=180^0\)
=>\(\widehat{DME}=180^0\)
=>D,M,E thẳng hàng