K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

a: Ta có: AD=DE=EC

=>D là trung điểm của AE và E là trung điểm của DC

Xét ΔBDC có

M,E lần lượt là trung điểm của CB,CD

=>ME là đường trung bình của ΔBDC

=>ME//BD

b: Ta có: ME//BD

I\(\in\)BD

Do đó: ID//ME

Xét ΔAME có

D là trung điểm của AE

DI//ME

Do đó: I là trung điểm của AM

=>AI=IM

15 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi E là trung điểm của DC

Trong ΔBDC, ta có:

M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆ BCD

⇒ME // BD (tính chất đường trung bình tam giác)

Suy ra: DI // ME

AD = 1/2 DC (gt)

DE = 1/2 DC (cách vẽ)

⇒ AD = DE và DI//ME

Nên AI= IM (tính chất đường trung bình của tam giác).

5 tháng 8 2021

nham bai

Gọi K là trung điểm của DC

Suy ra: AD=DK=KC

Xét ΔBDC có 

M là trung điểm của BC

K là trung điểm của DC

Do đó: MK là đường trung bình của ΔBDC

Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)

hay ID//MK

Xét ΔAMK có 

D là trung điểm của AK

DI//MK

Do đó: I là trung điểm của AM

hay IA=IM

25 tháng 9 2021

a) Xét tam giác BDC có:

M là trung điểm BC(gt)

E là trung điểm DC(DE=EC)

=> ME là đường trung bình

=> ME//BD

b) Xét tam giác AME có:

ME//BD

D là trung điểm AE(AD=DE)

=> I là trung điểm AM

c) Xét tam giác AME có:

D là trung điểm AE(AD=DE)

I là trung điểm AM(cmt)

=> ID là đường trung bình

\(\Rightarrow ID=\dfrac{1}{2}ME\)

Mà \(ME=\dfrac{1}{2}BD\)(do ME là đường trung bình tam giác BDC)

\(\Rightarrow ID=\dfrac{1}{2}.\dfrac{1}{2}BD=\dfrac{1}{4}BD\)

21 tháng 7 2019

Hình bạn tự vẽ nhé

Giải: Kẻ \(MG//BD\) ta có: \(\hept{\begin{cases}MG//BD\\MB=MC\left(gt\right)\end{cases}}\Rightarrow\) MG là đường trung bình tam giác BCD.

\(\Rightarrow DG=CG=\frac{1}{2}CD\Rightarrow DG=AD\)

Xét tam giác AMG ta có: \(\hept{\begin{cases}MG//DI\\AD=DG\end{cases}}\Rightarrow AI=IM\left(đpcm\right)\) (tc đường tb tam giác) 

28 tháng 1 2022

a) Xét △ AED có AE=AD nến △AED cân tại A

\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\) 

△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC

Xét △DEB và △EDC có :

\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)

ED : cạnh chung

EB=DC \(\left(cmt\right)\) 

Do đó : △DEB = △EDC \(\left(c.g.c\right)\) 

Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\) 

b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\) 

Vậy △IBC cân tại I

c) Xét △AIB và △AIC có :

AB=AC(gt)

\(\widehat{ABD}=\widehat{ACE}\) (câu a)

BI=CI(vì △IBC cân tại I)

Do đó :△AIB=△AIC\(\left(c.g.c\right)\) 

\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\) 

d) Xét △AED và △ABC có :

A : chung 

\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) 

Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\) 

\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC

Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC

e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC

 

 

28 tháng 1 2022

a, Xét tam giác ABD và tam giác ACE ta có : 

^A _ chung 

^AB = AC ( gt ) 

AD = AE ( gt )

Vậy tam giác ABD = tam giác ACE ( g.c.g )

b, => ^ABD = ^ACE ( 2 góc tương ứng ) 

mà tam giác ABC cân tại => ^B = ^C 

=> ^B - ^ABD = ^DBC 

=> ^C - ^ACE = ^ECB 

=> ^DBC = ^ECB 

Xét tam giác IBC có : ^DBC = ^ECB 

nên IBC là tam giác cân tại I

c, Xét tam giác ABI và tam giác ACI ta có : 

^ABI = ^ACI ( cmt )

AB = AC ( gt) 

IA _ chung 

Vậy tam giác ABI = tam giác ACI ( c.g.c ) 

=> ^BAI = ^CAI ( 2 góc tương ứng )

Vậy AI là phân giác ^BAC 

d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )

mà AI là phân giác của tam giác ABC cân tại A

=> AI đồng thời là đường cao 

=> AI vuông BC ; ED // BC (cmt)

=> AI vuông ED 

e, Xét tam giác ABC cân tại A

AI là đường cao, phân giác 

đồng thời AI là đường trung trực đoạn BC 

15 tháng 10 2021

Gọi E là trung điểm của DC

 

Trong ΔBDC, ta có:

 

M là trung điểm của BC (gt)

 

E là trung điểm của CD (gt)

 

Nên ME là đường trung bình của ∆ BCD

 

⇒ME // BD (tính chất đường trung bình tam giác)

 

Suy ra: DI // ME

 

AD = 1/2 DC (gt)

 

DE = 1/2 DC (cách vẽ)

 

⇒ AD = DE và DI//ME

 

Nên AI= IM (tính chất đường trung bình của tam giác).

15 tháng 10 2021

thank

 

30 tháng 6 2018

Lấy N là trung điểm của DC ; ta có \(AD=DN=NC\)

Xét tam giác BCD có MN là đường trung bình \(\Rightarrow MN\text{//}BD\) hay \(MN\text{//}ID\)

Xét tam giác AMN có D là trung điểm của AN; ID//MN (cmt) => I là trung điểm của AM

=> ĐPCM

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

=>BE=DC

=>AE=AD

b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có

AI chung

AE=AD

=>ΔAEI=ΔADI

=>góc EAI=góc DAI

=>AI là phân giác của góc BAC

c: ΔABC cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

=>A,I,M thẳng hàng

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `2\Delta` vuông và `BEC` và `CDB`:

`\text {BC chung}`

$\widehat {B} = \widehat {C}$

`=> \Delta BEC = \Delta CDB (ch-gn)`

`-> \text {BE = CD (2 cạnh tương ứng)}`

`b,`

Ta có: \(\left\{{}\begin{matrix}\text{AB = AE + BE}\\\text{AC = AD + CD}\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}\text{AB = AC}\\\text{BE = CD}\end{matrix}\right.\)

`-> \text {AE = AD}`

Xét `2\Delta` vuông `AEI` và ` ADI`:

`\text {AE = AD}`

`\text {AI chung}`

`=> \Delta AEI = \Delta ADI (ch-cgv)`

`->` $\widehat {EAI} = \widehat {DAI} (\text {2 góc tương ứng})$

`-> \text {AI là tia phân giác của}` $\widehat {EAD}$

Mà \(\text{E}\in\text{AB, D}\in\text{AC}\)

`-> \text {AI là tia phân giác của}` $\widehat {BAC}$ `(1)`

`c,`

Vì M là trung điểm của AC

`-> \text {AM là đường trung tuyến của} \Delta ABC` `(2)`

Từ `(1)` và `(2)`

`-> \text {Ba điểm A, I, M thẳng hàng.}`

loading...