K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

a) Do AB, AC tiếp xúc (O) tại B, C nên \(\widehat{OBA}=90^o\) và \(OA\perp BC\) tại H.

 Xét tam giác OAB vuông tại B có đường cao BH, ta có \(OB^2=OA.OH\)

 Mà \(OB=OD\left(=R_{\left(O\right)}\right)\) nên \(OD^2=OA.OH\). Từ đó suy ra \(\dfrac{OD}{OA}=\dfrac{OH}{OD}\). Từ đó dễ dàng suy ra 2 tam giác OHD và ODA đồng dạng.

b) Tam giác OAB vuông tại B có đường cao BH nên \(AB^2=AH.AO\)

 Mặt khác, ta có \(\widehat{ABD}=\widehat{AEB}\) vì chúng lần lượt là góc tạo bởi tiếp tuyến, dây cung và góc nội tiếp cùng chắn cung BD.

 \(\Rightarrow\Delta ABD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\Rightarrow AB^2=AD.AE\)

Từ đó suy ra \(AH.AO=AD.AE\) hay \(\dfrac{AH}{AD}=\dfrac{AE}{AO}\). Do đó \(\Delta AHE~\Delta ADO\left(c.g.c\right)\) \(\Rightarrow\widehat{AEH}=\widehat{AOD}\) hay tứ giác OHDE nội tiếp.

 \(\Rightarrow\widehat{AHD}=\widehat{DEO}=\widehat{ODE}=\widehat{OHE}\)

\(\Rightarrow90^o-\widehat{AHD}=90^o-\widehat{OHE}\) \(\Rightarrow\widehat{DHI}=\widehat{EHI}\).

Ta suy ra được đpcm.

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

1: \(AO=\sqrt{3^2+8^2}=\sqrt{73}\left(cm\right)\)

BC=2*R=6cm

\(CA=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

BD=6*8/10=4,8cm

2: Xét ΔBCE có

O là trung điểm của BC

OH//CE

=>H là trung điểm của BE

ΔOBE cân tại O

mà OH là trung tuyến

nên OH là phân giác của góc BOE

Xét ΔOBA và ΔOEA có

OB=OE

góc BOA=góc EOA

OA chung

=>ΔOBA=ΔOEA
=>góc OEA=90 độ

=>AE là tiếp tuyến của (O)

a: ΔODE cân tại O

mà OM là trung tuyến

nên OM vuông góc DE

=>góc OMA=90 độ=góc OCA=góc OBA

=>O,A,B,M,C cùng thuộc 1 đường tròn

b: Xét ΔBSC và ΔCSD có

góc SBC=góc SCD

góc S chung

=>ΔBSC đồng dạng với ΔCSD

=>SB/CS=SC/SD

=>CS^2=SB*SD

góc DAS=gócEBD

=>góc DAS=góc ABD

=>ΔSAD đồng dạng với ΔSBA

=>SA/SB=SD/SA

=>SA^2=SB*SD=SC^2

=>SA=SC
c; BE//AC

=>EH/SA=BH/SC=HJ/JS

mà SA=SC
nênHB=EH

=>H,O,C thẳng hàng

20 tháng 10 2021

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

DO đó:ΔBDC vuông tại D

Xét ΔBCA vuông tại B có BD là đường cao ứng với cạnh huyền AC

nên \(AB^2=AD\cdot AC\)

7 tháng 9 2017

Học online 123 hỏi đáp tun cậy của h/s

10 tháng 7 2018

ủa bn vừa nãy nói nghĩa là sao vậy