K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

Có \(\overrightarrow{MA}+k\overrightarrow{MB}+\left(1-k\right)\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+k\left(\overrightarrow{MB}-\overrightarrow{MC}\right)=\overrightarrow{0}\)       (1)

Gọi N là trung điểm của AC thì 

(1) \(\Leftrightarrow2\overrightarrow{MN}+k\overrightarrow{CB}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\)      (2)

Vậy điểm M là điểm thỏa mãn \(\overrightarrow{NM}=\dfrac{k}{2}\overrightarrow{CB}\) với N là trung điểm AC.

30 tháng 10 2017

Gọi I là tâm của hình chữ nhật ABCD ta có   2 M I → = M A → + M C → 2 M I → = M B → + M D → ,    ∀ M .

Do đó :

M A → + M B → + M C → + M D → = k ⇔ ( M A → + M C → ) + ( M B → + M D → ) = k ⇔ 2 M I → + 2 M I → = k ⇔ 4 M I → = k ⇔ M I → = k 4 . ( * )

Vì I là điểm cố định nên tập hợp các điểm M thỏa mãn đẳng thức (*) là đường tròn tâm I bán kính  R = k 4 .

Chọn C.

6 tháng 2 2017

NV
31 tháng 5 2020

Gọi \(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-2;y\right)\\\overrightarrow{BN}=\left(x-1;y-2\right)\end{matrix}\right.\)

\(NA=2NB\Leftrightarrow\sqrt{\left(x-2\right)^2+y^2}=2\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}\)

\(\Leftrightarrow x^2-4x+4+y^2=4\left[x^2-2x+1+y^2-4y+4\right]\)

\(\Leftrightarrow3x^2+3y^2-4x-16y+16=0\)

\(\Leftrightarrow x^2+y^2-\frac{4}{3}x-\frac{16}{3}y+\frac{16}{3}=0\)

\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2+\left(y-\frac{8}{3}\right)^2=\frac{20}{9}\)

\(\Rightarrow a+b+R^2=\frac{2}{3}+\frac{8}{3}+\frac{20}{9}=\frac{50}{9}\)

 Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:A. đường trung trực của đoạn ABB. đường tròn đường kính ABC. đường trung trực đoạn thẳng IAD. đường tròn tâm A, bán kính ABCâu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng...
Đọc tiếp

 

Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:

A. đường trung trực của đoạn AB

B. đường tròn đường kính AB

C. đường trung trực đoạn thẳng IA

D. đường tròn tâm A, bán kính AB

Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.

A. R = a/3

B. R = a/9

C. R = a/2

D. R = a/6

Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:

A. một đoạn thẳng

B. một đường thẳng

C. một đường tròn

D. một điểm

Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?

A.1

B.2

C.3

D. vô số

 

0

a: Thay x=5 vào pt, ta được:

5^2-2(m-1)*5+m^2-4m+3=0

=>m^2-4m+3+25-10m+10=0

=>m^2-14m+38=0

=>(m-7)^2=11

=>\(m=\pm\sqrt{11}+7\)

b: x1+x2=2m-2

x1*x2=m^2-4m+3

(x1+x2)^2-4x1x2

=4m^2-8m+4-4m^2+4m-6

=-4m-2

(x1+x2)^2-4x1x2+2(x1+x2)

=-4m-2+4m-4=-6

23 tháng 5 2017

MA^2+MB^2=K^2

=(A^2+B^2)×M=k^2