Thực hiện phép tính về phân thức sau:
a) ( -2x-1/x+2+3x+4/x+2)x^2-4
b) (-x-1/x+1+2x-1/x+1)x^2+2x+1/x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
b: \(=\dfrac{x+3-4-x}{x-2}=\dfrac{-1}{x-2}\)
Bài 2:
a: \(=\dfrac{x+1}{2\left(x+3\right)}+\dfrac{2x+3}{x\left(x+3\right)}\)
\(=\dfrac{x^2+x+4x+6}{2x\left(x+3\right)}=\dfrac{x^2+5x+6}{2x\left(x+3\right)}=\dfrac{x+2}{2x}\)
d: \(=\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(=\dfrac{3y^2+10xy+2x^3}{2x^2y^3}\)
e: \(=\dfrac{x^2+2xy+x^2-2xy-4xy}{\left(x+2y\right)\left(x-2y\right)}=\dfrac{2x^2-4xy}{\left(x+2y\right)\cdot\left(x-2y\right)}=\dfrac{2x}{x+2y}\)
a: \(=\dfrac{4x-2+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2x-1}{2x\left(2x-1\right)}\)
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
a: =3x^3-15x^2+21x
b: =-x^3+6x^2+5x-4x^2-24x-20
=-x^3+2x^2-19x-20
c: =9x^2+15x-3x-5-7x^2-14
=2x^2+12x-19
d: =10x^2-4x+2/3
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
a: ĐKXĐ: \(x\ne-2\)
\(\left(\dfrac{-2x-1}{x+2}+\dfrac{3x+4}{x+2}\right)\cdot\left(x^2-4\right)\)
\(=\dfrac{-2x-1+3x+4}{x+2}\cdot\left(x-2\right)\left(x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)=x^2+x-6\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(\left(\dfrac{-x-1}{x+1}+\dfrac{2x-1}{x+1}\right)\cdot\dfrac{x^2+2x+1}{x-2}\)
\(=\dfrac{-x-1+2x-1}{x+1}\cdot\dfrac{\left(x+1\right)^2}{x-2}\)
\(=\dfrac{x-2}{x-2}\cdot\left(x+1\right)=x+1\)