Cho hình tam giác ABC. Trên đường cao AH lấy điểm MA bằng MH. Nối MB ,MC. Hãy so sách diện tích hình tam giác MBC và hình tứ giác ABMC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Sửa đề: Hình gấp khúc ABMC
Xét ΔMBC có MH là đường cao
nên \(S_{MBC}=\dfrac{1}{2}\cdot MH\cdot BC=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{4}\cdot AH\cdot BC\)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)
\(S_{MBC}+S_{ABMC}=S_{ABC}\)
=>\(S_{ABMC}+\dfrac{1}{4}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AH\cdot BC\)
=>\(S_{ABMC}=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(S_{BMC}=S_{ABMC}\)