Tìm số nguyên x để 3x + 7 chia hết cho x - 1
Làm ơn có thể giải thích được ko ạ ? Mai thi rồi =))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
Do số đã cho là số lẻ nên ko chia hết cho 2
Do số đã cho có tận cùng khác 0, 5 nên ko chia hết cho 5
Gọi p là 1 số nguyên tố nào đó, với \(p\ne\left\{2;5\right\}\) \(\Rightarrow2^x.5^y\) nguyên tố cùng nhau p
\(\Rightarrow10^z\) nguyên tố cùng nhau với p với mọi z nguyên dương
Ta xét dãy gồm p+1 số có dạng:
1; 11; 111; ...; 111...11 (p+1 chữ số 1)
Theo nguyên lý Dirichlet, trong p+1 số trên có ít nhất 2 số có cùng số dư khi chia hết cho p
Giả sử đó là 111..11 (m chữ số 1) và 111...11 (n chữ số 1), với \(m< n\le p\)
\(\Rightarrow111...11\left(n\text{ chữ số 1}\right)-111...11\left(m\text{ chữ số 1}\right)\) chia hết cho p
\(\Rightarrow111...11000...00\left(a\text{ chữ số 1}\text{ và b chữ số 0}\right)\) chia hết cho p (với a<m)
\(\Rightarrow111...11.10^b\) chia hết cho p
Mà \(10^p\) nguyê tố cùng nhau với p
\(\Rightarrow111...11\left(a\text{ chữ số 1}\right)\) chia hết cho p
Vậy với mọi số nguyên tố p khác 2 và 5, luôn luôn tìm được ít nhất 1 số có dạng 111...11 chia hết cho p
\(\Rightarrow\) Mọi số nguyên tố, trừ 2 và 5, đều có thể là ước của số có dạng 111...11
a) Vì 12 ⋮ 3x + 1 => 3x + 1 ∊ Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12} => 3x ∊ {-13;-7;-5;-4;-3;-2;0;1;2;3;5;11}. Vì 3x ⋮ 3 => 3x ∊ {-3;0;3} => x ∊ {-1;0;1}. Vậy x ∊ {-1;0;1}. b) 2x + 3 ⋮ 7 => 2x + 3 ∊ B(7) = {...;-21;-14;-7;0;7;14;21;...}. Vì 2x ⋮ 2 mà 3 lẻ nên khi số lẻ trừ đi 3 thì 2x mới ⋮ 2 => 2x + 3 lẻ => 2x + 3 ∊ {...;-35;-21;-7;7;21;35;...} => 2x ∊ {...;-38;-24;-10;4;18;32;...} => x ∊ {...;-19;-12;-5;2;9;16;...} => x ⋮ 7 dư 2 => x = 7k + 2. Vậy x = 7k + 2 (k ∊ Z)
Nhiều như vậy sao trả lời hết được
Xin lỗi nha
Tk cho mk 1 cái
a; \(x+3\) ⋮ \(x\) - 4 (\(x\ne\) 4; \(x\in\) Z)
\(x\) - 4 + 7 ⋮ \(x-4\)
7 ⋮ \(x\) - 4
\(x\) - 4 \(\in\) Ư(7) = {- 7; -1; 1; 7}
Lập bảng ta có:
\(x-4\) | - 7 | -1 | 1 | 7 |
\(x\) | -3 | 3 | 5 | 11 |
Theo bảng trên ta có: \(x\) \(\in\) {- 3; 3; 5; 11}
Vậy \(x\) \(\in\) {- 3; 3; 5; 11}
\(3x+7⋮x-1\)
=>\(3x-3+10⋮x-1\)
=>\(10⋮x-1\)
=>\(x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
3x+7chia het cho x-1
suy ra 3x chia het cho x-1và 7chia het cho x-1
suy ra x-1 thuộc ước cua 7
ước của 7 là 1 và 7
Vậy x = 6 hoặc 0