cho hình chóp SABCD có đáy ABCD là hình bình hành tâm O , M là trung điểm CD , DN =2SN (N thuộc SD), chứng minh rằng SO//(AMN)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)
\(\Rightarrow MN||\left(ABCD\right)\)
Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G
Trong mp (SAD), nối GN kéo dài cắt SA tại P
Ngũ giác PNEFM là thiết diện của (MNE) và chóp
Đề bài sai òi :v Vẽ hình ra đi bạn.
Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)
Trong mp (SAD), qua M kẻ đường thẳng song song AD cắt SA tại P
Trong mp (ABCD), qua N kẻ đường thẳng song song AD cắt AB tại Q
\(\Rightarrow PQ\in\left(\alpha\right)\)
Gọi E là giao điểm của AC và NQ
Trong mp (SAC), nối PE cắt SO tại K
\(\Rightarrow K=SO\cap\left(\alpha\right)\)
+) Xét tam giác SAC có SA = SC \( \Rightarrow \) SAC là tam giác cân mà SO là trung tuyến
\( \Rightarrow \) SO \( \bot \) AC.
Xét tam giác SBD có SB = SD \( \Rightarrow \) SBD là tam giác cân mà SO là trung tuyến
\( \Rightarrow \) SO \( \bot \) BD.
+) Ta có SO \( \bot \) AC; SO \( \bot \) BD; AC \( \cap \) BD tại O \( \Rightarrow \) SO \( \bot \) (ABCD).
Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E
\(\Rightarrow E\in\left(SBC\right)\)
Do AD song song BE, áp dụng Talet:
\(\dfrac{AN}{NE}=\dfrac{ND}{NC}=1\Rightarrow AN=NE\Rightarrow\) N là trung điểm AE
\(\Rightarrow MN\) là đường trung bình tam giác SAE
\(\Rightarrow MN//SE\Rightarrow MN//\left(SBC\right)\)