K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

Ta có hình vẽ:

O A B D C m n

a) Vì góc AOB và AOD là 2 góc kề bù nên OB và OD là 2 tia đối nhau (1)

Vì góc AOB và BOC là 2 góc kề bù nên OA và OC là 2 tia đối nhau (2)

Từ (1) và (2) => BOC và AOD là 2 góc đối đỉnh (đpcm)

b) Gọi Om, On lần lượt là tia phân giác của AOD và BOC

\(\Rightarrow\begin{cases}AOm=mOD=\frac{AOD}{2}\\BOn=nOC=\frac{BOC}{2}\end{cases}\)

Mà AOD = BOC (đối đỉnh)

Do đó, \(AOm=mOD=BOn=nOC\)

Lại có: AOD + AOB = 180o (kề bù)

=> DOm + mOA + AOB = 180o

=> BOn + mOA + AOB = 180o

Mà BOn, mOA, AOb là các góc tương ứng kề nhau và không có điểm trong chung nên mOn = 180o hay Om và On là 2 tia đối nhau (đpcm)

a) Ta có: \(\widehat{AOB}\) và \(\widehat{BOC}\) là hai góc kề bù(gt)

nên \(\widehat{AOB}+\widehat{BOC}=180^0\)

\(\Leftrightarrow\widehat{AOB}+5\cdot\widehat{AOB}=180^0\)

\(\Leftrightarrow6\cdot\widehat{AOB}=180^0\)

hay \(\widehat{AOB}=30^0\)

Ta có: \(\widehat{BOC}=5\cdot\widehat{AOB}\)(gt)

nên \(\widehat{BOC}=5\cdot30^0\)

hay \(\widehat{BOC}=150^0\)

Vậy: \(\widehat{AOB}=30^0\)\(\widehat{BOC}=150^0\)

b) Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{DOB}< \widehat{BOC}\left(75^0< 150^0\right)\)

nên tia OD nằm giữa hai tia OB và OC

\(\Leftrightarrow\widehat{COD}+\widehat{BOD}=\widehat{COB}\)

\(\Leftrightarrow\widehat{COD}=\widehat{COB}-\widehat{BOD}=150^0-75^0=75^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OC, ta có: \(\widehat{COD}< \widehat{COA}\left(75^0< 180^0\right)\) nên tia OD nằm giữa hai tia OC và OA

\(\Leftrightarrow\widehat{COD}+\widehat{AOD}=\widehat{COA}\)

\(\Leftrightarrow\widehat{AOD}=\widehat{COA}-\widehat{COD}=180^0-75^0\)

hay \(\widehat{AOD}=105^0\)

Vậy: \(\widehat{AOD}=105^0\)

4 tháng 2 2021

a) \(\widehat{AOB}\) và \(\widehat{BOC}\) kề bù \(\Rightarrow\widehat{AOB}+\widehat{BOC}=180^0\) mà \(\widehat{BOC}=5\widehat{AOB}\)

\(\Rightarrow\widehat{AOB}+5\widehat{AOB}=180^0\Rightarrow6\widehat{AOB}=180^0\\ \Rightarrow\widehat{AOB}=30^0\Rightarrow\widehat{BOC}=150^0\).

b) Do \(OD\) nằm trong góc \(\widehat{BOC}\) \(\Rightarrow\) tia \(OD\) nằm giữa hai tia \(OB,OC\)

\(\Rightarrow\)tia \(OB\) và tia \(OA\) nằm cùng phía nhau so với tia \(OD\)

\(\Rightarrow\) tia \(OB\) nằm giữa hai tia \(OA,OD\)

\(\Rightarrow\widehat{AOD}=\widehat{AOB}+\widehat{BOD}=30^0+75^0=105^0\).

c) Nếu chỉ xét trường hợp các góc tạo bởi hai tia liên tiếp nhau:

Trên nửa mặt phẳng bờ \(AC\) có \(n+4\) tia (gồm \(4\) tia \(OA,OB,OC,OD\) và \(n\) tia vẽ thêm).

Cứ hai tia cạnh nhau tạo thành 1 góc

\(\Rightarrow\) Ta có \(n+3\) góc.

26 tháng 3 2017

Chú ý: câu a kẻ luôn tia Oa'' là tia đối của Oa!

O a b c a''

a/ Ta có: \(\widehat{a''Ob}+\widehat{bOa}=180\)  độ (kề bù)

      \(\Rightarrow\widehat{a''Ob}+120=180\)

     \(\Rightarrow\widehat{a''Ob}=180-120=60\)độ (1)

Ta lại có: \(\widehat{a''Oc}+\widehat{cOa}=180\)độ (kề bù)

         \(\Rightarrow\widehat{a''Oc}+120=180\)

         \(\Rightarrow\widehat{a''Oc}=180-120=60\)độ (2)

Từ (1),(2) ta có: \(\widehat{bOc}=120\)độ

Vậy: \(\widehat{aOb}=\widehat{aOc}=\widehat{bOc}\left(đpcm\right)\)

b) Vì đã tính ở câu a hết trơn nên câu này nhẹ nhàng lắm.

\(Oa''\)là phân giác \(\widehat{bOc}\)

\(Oa\)nằm giữa 2 tia \(Ob;Oc\)

\(\widehat{a''Ob}=\widehat{a''Oc}=\frac{\widehat{bOc}}{2}\)

Ps: Check lại coi có sai sót gì ko nha

a) Do BOC và AOB là 2 góc kề bù 

=> OA ; OC là 2 tia đối nhau

Do AOD và AOB là 2 góc kề bù 

=> OD ; OB là 2 tia đối nhau 

=> BOC và AOD là 2 góc đối đỉnh (dpcm)

b) ?????????????

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Vì \(\widehat {AOB}\) và \(\widehat {BOC}\) là 2 góc kề nhau nên \(\widehat {AOB} + \widehat {BOC} = \widehat {AOC}\), mà \(\widehat {AOC} = 80^\circ \) nên \(\widehat {AOB} + \widehat {BOC} = 80^\circ \)

Vì \(\widehat {AOB} = \frac{1}{5}.\widehat {AOC}\) nên \(\widehat {AOB} = \frac{1}{5}.80^\circ  = 16^\circ \)

Như vậy,

\(\begin{array}{l}16^\circ  + \widehat {BOC} = 80^\circ \\ \Rightarrow \widehat {BOC} = 80^\circ  - 16^\circ  = 64^\circ \end{array}\)

Vậy \(\widehat {AOB} = 16^\circ ;\widehat {BOC} = 64^\circ \)