tìm một số tự nhiên có 4 chữ số mà khi chuyển chữ số tận cùng của số đó là 4 lên đầu thì được số mới lớn hơn số phải tìm 2187 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cần tìm có dạng: \(\overline{abc8}\)
Chuyển số 8 ở hàng đơn vị lên đầu ta được số mới là: \(\overline{8abc}\)
Theo bài ra ta có: \(\overline{8abc}\) - \(\overline{abc8}\) = 6192
8000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 8 = 6192
(8000 - 8) - (10 - 1) \(\times\) \(\overline{abc}\) = 6192
7992 - 9\(\times\) \(\overline{abc}\) = 6192
9 \(\times\) \(\overline{abc}\) = 7992 - 6192
9 \(\times\) \(\overline{abc}\) = 1800
\(\overline{abc}\) = 1800: 9
\(\overline{abc}\) = 200
Thay \(\overline{abc}\) = 200 vào \(\overline{abc8}\) = 2008
Vậy số cần tìm là 2008
Đáp số: 2008
1. Gọi số cần tìm là \(\overline{ab}5\), số sau khi chuyển là \(5\overline{ab}\), ta có :
5ab
- ab5
288
*b - 5 = 8 => b = 13 (viết 3 nhớ 1)
*a - b = a - 3 = 8 => a = 12 (viết 2 nhớ 1)
Vậy số cần tìm là 235.
bạn lên [onlinemath] đi sẽ có nhiều người giỏi giải giúp bạn nhé
Bài 1: Gọi số đó là: \(\overline{ab5}\)
Ta có: \(\overline{5ab}-\overline{ab5}=288\)
\(\Leftrightarrow500+\overline{ab}-\left(10.\overline{ab}+5\right)=288\)
\(\Leftrightarrow500+\overline{ab}-10.\overline{ab}-5=288\)
\(\Leftrightarrow\left(500-5\right)-\left(10.ab-\overline{ab}\right)\)=288
\(\Leftrightarrow495-9.\overline{ab}=288\)
\(\Leftrightarrow9.\overline{ab}=495-288=207\)
\(\Leftrightarrow\overline{ab}=207:9=23\)
\(\Rightarrow\) số cần tìm là 23.
Bài 3: Gọi số cần tìm là \(\overline{ab}\)
Ta có: \(\overline{ab}+18=\overline{ba}\)
\(\Leftrightarrow10a+b+18=10b+a\)
\(\Leftrightarrow\left(10a-a\right)+18=10b-b\)
\(\Leftrightarrow9a+18=9b\)
\(\Leftrightarrow9\left(a+2\right)=9b\)
\(\Rightarrow a+2=b\)
\(\Rightarrow b=\left(8+2\right):2=5\)
\(\Rightarrow a=8-5=3\)
Vậy: số cần tìm là: \(35\)
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) =2443
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 2443
(7000 -7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 2443
6993 - \(\overline{abc}\) \(\times\) 9 = 2443
\(\overline{abc}\) \(\times\) 9 = 6993 - 2443
\(\overline{abc}\) \(\times\) 9 = 4550
\(\overline{abc}\) = 4550 : 9
\(\overline{abc}\) = \(\dfrac{4550}{9}\)
Không có số nào thỏa mãn đề bài
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Khi chuyển số lên đầu ta được số mới: \(\overline{7abc}\)
Theo bài ra ta có: \(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7= 5859
(7000 - 7) - \(\overline{abc}\) \(\times\)( 10 - 1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức: \(\overline{abc7}\) ta được số cần tìm là: 1267
Số thỏa mãn đề bài có dạng: \(\overline{abc7}\)
Chuyển số 7 lên đầu ta được số mới là: \(\overline{7abc}\)
Theo bài ra ta có:
\(\overline{7abc}\) - \(\overline{abc7}\) = 5859
7000 + \(\overline{abc}\) - \(\overline{abc}\) \(\times\) 10 - 7 = 5859
(7000 -7) - \(\overline{abc}\) \(\times\)(10 -1) = 5859
6993 - \(\overline{abc}\) \(\times\) 9 = 5859
\(\overline{abc}\) \(\times\) 9 = 6993 - 5859
\(\overline{abc}\) \(\times\) 9 = 1134
\(\overline{abc}\) = 1134 : 9
\(\overline{abc}\) = 126
Thay \(\overline{abc}\) = 126 vào biểu thức \(\overline{abc7}\) ta được số cần tìm là 1267
Đáp số: 1267
Lời giải:
Gọi số cần tìm là $\overline{abc7}$ với $a,b,c$ là số tự nhiên có 1 chữ số. $a>0$
Theo bài ra ta có:
$\overline{7abc}-\overline{abc7}=5859$
$7000+\overline{abc}-(\overline{abc}\times 10+7)=5859$
$7000+\overline{abc}-\overline{abc}\times 10-7=5859$
$6993+\overline{abc}-\overline{abc}\times 10=5859$
$6993+\overline{abc}=5859+\overline{abc}\times 10$
$6993-5859=\overline{abc}\times 10-\overline{abc}$
$1134=9\times \overline{abc}$
$\overline{abc}=1134:9=126$
Vậy số cần tìm là $1267$
4abc−abc4=612
<=> 4000 + abc - 10abc - 4 = 612
<=> 9abc = 3384
<=> abc = 376
Vậy số cần tìm là 3764.
<=> 4000 + abc - 10abc - 4 = 612
<=> 9abc = 3384
<=> abc = 376
Vậy số cần tìm là 3764.
\(\overline{4abc}-\overline{abc4}=612\)
<=> 4000 + abc - 10abc - 4 = 612
<=> 9abc = 3384
<=> abc = 376
Vậy số cần tìm là 3764.
Gọi số phải tìm là abc4 ( có gạch trên đầu mà do mình không viết được nha, các số khác cũng vậy ). Số mới là 4abc.
4abc - abc4 = 612
4000 + abc - 10abc - 4 = 612
3996 - 9abc = 612
9abc = 3996 - 612
9abc = 3384
abc = 3384 : 9
abc = 376
Vậy số phải tìm là 3764.
Gọi số cần tìm là \(abc4\).
Theo bài: \(abc4+2187=4abc\)
\(\Rightarrow10\cdot abc+4+2187=4000+abc\)
\(\Rightarrow9abc=1809\Rightarrow abc=201\)
Vậy số tự nhiên cần tìm là \(2014\)
Gọi số cần tìm là
�
�
�
4
abc4.
Theo bài:
�
�
�
4
+
2187
=
4
�
�
�
abc4+2187=4abc
⇒
10
⋅
�
�
�
+
4
+
2187
=
4000
+
�
�
�
⇒10⋅abc+4+2187=4000+abc
⇒
9
�
�
�
=
1809
⇒
�
�
�
=
201
⇒9abc=1809⇒abc=201
Vậy số tự nhiên cần tìm là
2014