K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2022

E ở đâu thế bạn 

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC
AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: HB=HC

Xét ΔAHE vuông tại E và ΔAHD vuông tại D có

AH chung

\(\widehat{EAH}=\widehat{DAH}\)

Do đó: ΔAHE=ΔAHD

Suy ra: \(\widehat{AHE}=\widehat{AHD}\)

24 tháng 4 2015

giai gium tui di

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

góc B chung

Do đó ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay AD/AC=AE/AB

=>ΔADE\(\sim\)ΔACB

a/ Xét tam giác AHB và tam giác AHC có:

AH chung

Góc AHB=AHC=90o

Góc ABC=ACB(Tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC(ch-gn)

=> HB=HC(cạnh tương ứng) và Góc BAH=CAH(góc tương ứng)

b/ Xét tam giác AHD và tam giác AHE có:

AH chung

ADH=AEH=900

DAH=EAH(Góc tương ứng của tam giác AHB=tam giác AHC)

=> Tam giác AHD=tam giác AHE(ch-gn)

=> AD=AE(cạnh tương ứng) và DH=HE(cạnh tương ứng)

=> Tam giác HDE cân tại H.

B C A H D E