Bài 17: ( 2.5 điểm) Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B e (O), C € (O'). Tiếp tuyến chung trong tại A cất tiếp tuyển chung ngoài BC ở I a) Chứng minh rằng BAC = 90°. b) Tính độ dài BC biết OA = 9cm, O'A = 4cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
IA = IB = IC
Tam giác BAC có AI là trung tuyến và AI = BC/2
⇒ Tam giác BAC vuông tại A hay ∠BAC = 90 0
Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.
tam giác ABC có đường trung tuyến AI = 1/2 BC nên là tam giác vuông
vậy B A C ^ = 90 o
a, Chứng minh được B A C ^ = 90 0 kết hợp B A D ^ = C A E ^ = 90 0 => ĐPCM
b, Chứng minh ∆BAD:∆EAC => AD.AE=AB.AC(đpcm)
c, Chứng minh tứ giác OIO’K là hình chữ nhật
Đường tròn ngoại tiếp ∆OKO’ chính là đường tròn ngoại tiếp hình chữ nhật ,có đường kính là IK mà IK ⊥ BC tại I
Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:
O I O ' ^ = O I A ^ + O ' I A ^ = 1 2 A I B ^ + 1 2 A I C ^ = 1 2 A I B ^ + A I C ^
Vậy O I O ' ^ = 90 o
c) Xét tam giác OIO' vuông tại I, IA là đường cao có:
IA 2 = O'A.OA = 4.9 = 36 ⇒ IA = 6 cm
Lại có: BC = 2 AI ⇒ BC = 12 (cm)
a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC.
b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên:
c) ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:
IA2 = AO.AO' = 9.4 = 36
=> IA = 6 (cm)
Vậy BC = 2.IA = 2.6 = 12 (cm)
a.
Do IA và IB là tiếp tuyến của (O), theo t/c hai tiếp tuyến cắt nhau ta có: \(IA=IB\)
Tương tự, IA và IC là tiếp tuyến của (O') \(\Rightarrow IA=IC\)
\(\Rightarrow IA=IB=IC=\dfrac{1}{2}BC\)
\(\Rightarrow\Delta ABC\) vuông tại A
\(\Rightarrow\widehat{BAC}=90^0\)
b.
Theo t/c hai tiếp tuyến cắt nhau ta có:
\(\left\{{}\begin{matrix}\widehat{OIB}=\widehat{OIA}=\dfrac{1}{2}\widehat{BIA}\\\widehat{O'IC}=\widehat{O'IA}=\dfrac{1}{2}\widehat{CIA}\end{matrix}\right.\)
\(\Rightarrow\widehat{OIA}+\widehat{O'IA}=\dfrac{1}{2}\left(\widehat{BIA}+\widehat{CIA}\right)\)
\(\Rightarrow\widehat{OIO'}=\dfrac{1}{2}.\widehat{BIC}=\dfrac{1}{2}.180^0=90^0\)
\(\Rightarrow\Delta OIO'\) vuông tại O
Do IA là tiếp tuyến chung tại điểm tiếp xúc ngoài của 2 đường tròn \(\Rightarrow IA\perp O'O\)
Áp dụng hệ thức lượng trong tam giác vuông OIO' với đường cao IA:
\(IA^2=OA.O'A=36\Rightarrow IA=6\left(cm\right)\)
\(\Rightarrow BC=2IA=12\left(cm\right)\)