(d):y=(m-1)x+m+2
tìm m để (d) đi qua M(1;2). Với giá trị m tìm được. Hãy tính khoang cách từ gốc tọa độ O của mặt phẳng tọa độ Oxy đến (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $m=1$ thì $(d): y=-2$ cách $O$ một khoảng $d=2$
Nếu $m=2$ thì $(d): x=1$ cách $O$ một khoảng $d=1$
Nếu $m\neq 1;2$:
Gọi $A$ và $B$ là giao điểm của $(d)$ với trục $Ox, Oy$
$y_A=0\Rightarrow x_A=\frac{1}{m-1}$
$x_B=0\Rightarrow y_B=\frac{2}{m-2}$
Gọi khoảng cách từ $O$ đến (d) là $h$ thì theo hệ thức lượng trong tam giác vuông thì:
\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}\) \(=(m-1)^2+(\frac{m-2}{2})^2\)
Để $h_{\max}$ thì $\frac{1}{h^2}$ min hay $(m-1)^2+(\frac{m-2}{2})^2$ min
Dễ thấy:
\((m-1)^2+(\frac{m-2}{2})^2=\frac{3}{2}m^2-4m+3\) \(=\frac{3}{2}(m-\frac{4}{3})^2+\frac{1}{3}\) đạt min khi $m=\frac{4}{3}$
Khi đó $h=\sqrt{3}$
Thông qua các TH trên thì thấy $m=1$ thì thỏa đề.
\(\left(d\right)\text{//}\left(d;\right)\Leftrightarrow\left\{{}\begin{matrix}m-1=\dfrac{1}{m-1}\\4\ne m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=0\)
PT giao Ox: \(y=0\Leftrightarrow x=-\dfrac{4}{m-1}\Leftrightarrow A\left(-\dfrac{4}{m-1};0\right)\Leftrightarrow OA=\dfrac{4}{\left|m-1\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\)
\(S_{AOB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow OA\cdot OB=4\\ \Leftrightarrow\dfrac{4}{\left|m-1\right|}\cdot4=4\\ \Leftrightarrow\left|m-1\right|=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)
a, thay \(x=1,y=2\) vào (d) (\(m\ne\dfrac{2}{3}\))
\(=>\left(3m-2\right).1+m-1=2< =>m=1,25\left(tm\right)\)
b, (d) tạo với Ox 1 góc tù \(< =>3m-2< 0< =>m< \dfrac{2}{3}\)
c,\(=>x=y=0\)
\(=>m-1=0< =>m=1\)
a. d qua gốc tọa độ khi:
\(m-2=0\Rightarrow m=2\)
b. d cắt trục tung tại điểm có tung độ là 1/3 khi:
\(m-2=\dfrac{1}{3}\Rightarrow m=\dfrac{7}{3}\)
c. d qua A khi:
\(2\left(1-4m\right)+m-2=-3\)
\(\Rightarrow m=\dfrac{3}{7}\)
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
Thay x=1 và y=2 vào (d), ta được:
1(m-1)+m+2=2
=>m-1+m+2=2
=>2m+1=2
=>2m=1
=>\(m=\dfrac{1}{2}\)
Thay m=1/2 vào (d), ta được:
\(y=\left(\dfrac{1}{2}-1\right)x+\dfrac{1}{2}+2=\dfrac{-1}{2}x+\dfrac{5}{2}\)
=>\(\dfrac{1}{2}x-y-\dfrac{5}{2}=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(\dfrac{\left|0\cdot\dfrac{1}{2}+0\cdot\left(-1\right)-\dfrac{5}{2}\right|}{\sqrt{\left(\dfrac{1}{2}\right)^2+\left(-1\right)^2}}=\dfrac{5}{2}:\sqrt{\dfrac{1}{4}+1}\)
\(=\dfrac{5}{2}:\sqrt{\dfrac{5}{4}}=\dfrac{5}{2}:\dfrac{\sqrt{5}}{2}=\sqrt{5}\)
Do (d) đi qua M, thay tọa độ M vào pt (d) ta được:
\(2=\left(m-1\right).1+m+2\Rightarrow m=\dfrac{1}{2}\)
Khi đó pt (d) có dạng: \(y=-\dfrac{1}{2}x+\dfrac{5}{2}\)
Gọi A và B lần lượt là giao điểm của (d) với Ox và Oy
\(y_A=0\Rightarrow-\dfrac{1}{2}x_A+\dfrac{5}{2}=0\Rightarrow x_A=5\Rightarrow OA=\left|x_A\right|=5\)
\(x_B=0\Rightarrow y_B=-\dfrac{1}{2}.0+\dfrac{5}{2}=\dfrac{5}{2}\Rightarrow OB=\left|y_B\right|=\dfrac{5}{2}\)
Gọi H là chân đường vuông góc hạ từ O xuống AB \(\Rightarrow OH\) là k/c từ O tới (d)
Áp dụng hệ thức lượng trong tam giác OAB vuông tại O:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{5^2}+\dfrac{1}{\left(\dfrac{5}{2}\right)^2}=\dfrac{1}{5}\)
\(\Rightarrow OH^2=5\Rightarrow OH=\sqrt{5}\)