Cho goc xoy=60 do,diem A nam trong goc do.Goi B,C lan luot la hai diem doi xung voi diem A qua Ox,Oy
a,cm tam giac boc can.tinh cac goc cua tam giac do
b,Tim diem I thuoc ox va diem K thuoc Oy sao cho tam giac AIK co chu vi nho nhat
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
a/ Xét hai tam giác vuông OAH và OBH có:
góc AOH = góc BOH (Gt)
OH: cạnh chung
=> tam giác OAH = tam giác OBH
=> OA = OB (hai cạnh tương ứng)
Vậy tam giác OAB cân tại O
b/ Ta có: OA = OB (cmt)
Ta lại có: AH = BH (t/g OAH = t/g BOH)
=> OH là trung trực của AB
=> OH vuông góc vs AB
hay OH là đường cao của tam giác OAB
Ta có: AD vuông góc với OB
hay AD là đường cao của tam giác OAB
Mà AD cắt OH tại C
=> C là trực tâm của tam giác
=> BC vuông góc vs OA
hay BC vuông góc vs Ox
gọi I là trung điểm AD
xét tam giác ACD có EI là đường trung bình nên IE song song CD và bằng 1/2 CD
xét trường hợp 1 EF cắt OA tại K ko thuộc tia Ox và cắt Oy tại Q thuộc Oy
có EI song song CD nên IEF=FQD
tương tự ta có IN là đường trung bình tam giác ABD nên IF song song AB và bằng 1/2 AB
AB=CD nên IE=IF
tam giác IEF cân tại I
ta có IF song song AB nên IF song song OK
INK= KNI
IMN = NQD = OQK
nên tam giác OKQ cân tại O có Ot là phân giác góc ngoài tại O nên Ot song song KQ hay song song MN
trường hợp còn lại làm tương tị
chỗ Ot là phân giác ngoài ban tự chứng minh song song đi dễ mà
Tự vẽ hình.
a) Xét \(\Delta OAH;\Delta OBH\) vuông tại A; B có:
OH chung
\(\widehat{AOH}=\widehat{BOH}\) (tia phân giác)
\(\Rightarrow\Delta OAH=\Delta OBH\left(ch-gn\right)\)
\(\Rightarrow AH=BH\)
\(\Rightarrow\Delta HAB\) cân tại H.
b) Gọi giao điểm của BC và OA là E.
Xét \(\Delta OAC;\Delta OBC:\)
\(OA=OB\) (suy ra từ câu a)
\(\widehat{AOC}=\widehat{BOC}\) (tia pg)
OC chung
\(\Rightarrow\Delta OAC=\Delta OBC\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAC}=\widehat{OBC}\) hay \(\widehat{OAD}=\widehat{OBE}\)
Xét \(\Delta OAD;\Delta OBE\):
\(\widehat{O}\) chung
\(OA=OB\)
\(\widehat{OAD}=\widehat{OBE}\) (c/m trên)
\(\Rightarrow\Delta OAD=\Delta OBE\left(g.c.g\right)\)
\(\Rightarrow\widehat{ODA}=\widehat{OEB}=90^o\)
\(\Rightarrow BC\perp Ox\)
a) Xét ΔMAO vuông tại A và ΔNBO vuông tại B có:
OA = OB (GT)
góc O chung
=> ΔMAO = ΔNBO (cạnh huyền - góc nhọn)
=> OM = ON ( 2 cạnh tương ứng ) → đpcm
Ta có OA + AN = ON
OB + BM = OM
mà OM = ON ( cm trên ); OA = OB
=> AN = BM → đpcm
b) Xét ΔNOH và ΔMOH có;
ON = OM (cm trên)
OH chung
NH = MH (suy từ gt)
=> ΔNOH = ΔMOH (c.c.c)
=> góc NOH = MOH ( 2 góc tương ứng )
Do đó OH là tia pg của góc xOy → đpcm (1)
c) Vì ΔMAO = ΔNBO nên góc OMA = ONB (2 góc tương ứng) hay ANI = BMI.
Xét ΔNAI và ΔMBI có:
góc ANI = BMI (cm trên)
AN = BM ( câu a)
góc NAI = MBI (= 90 )
=> ΔNAI = ΔMBI ( g.c.g )
=> AI = BI (2 cạnh tương ứng)
Xét ΔAOI và ΔBOI có :
AI = BI (cm trên)
góc OAI = OBI (=90)
OI chung
=> ΔAOI = ΔBOI ( c.g.c )
=> góc AOI = BOI ( 2 góc tương ứng )
Do đó OI là tia pg của xOy (2)
Từ (1) ở câu b và (2) suy ra O, H, I thẳng hàng.
Chúc học tốt nguyen thi minh nguyet
a) Xét t/g OAM vuông tại A và t/g OBN vuông tại B có:
OA = OB (gt)
O là góc chung
Do đó, t/g OAM = t/g OBN ( cạnh góc vuông và góc nhọn kề)
=> AMO = BNO (2 góc tương ứng)
OM = ON (2 cạnh tương ứng) (1)
Lại có: OB = OA (gt)
=> OM - OB = ON - OA
=> BM = AN (2)
(1) và (2) là đpcm
b) Xét t/g HAN vuông tại A và t/g HBM vuông tại B có:
AN = BM (câu a)
ANH = BMH (câu a)
Do đó, t/g HAN = t/g HBM ( cạnh góc vuông và góc nhọn kề)
=> HN = HM (2 cạnh tương ứng)
Dễ dàng c/m t/g NOH = t/g MOH (c.c.c)
=> NOH = MOH (2 góc tương ứng)
=> OH là phân giác NOM hay OH là phân giác xOy (đpcm)
c) Dễ dàng c/m t/g NOI = t/g MOI (c.c.c)
=> NOI = MOI (2 góc tương ứng)
=> OI là phân giác NOM
Mà OH cũng là phân giác NOM
Nên O,H,I thẳng hàng (đpcm)