cho ab+bc+ac =1 tính P= (a+b+c-abc)^2/(a^2+1)(b^2+1)(c^2+1)
Ai giúp mik với mik đang cần gấp
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho ab+bc+ac =1 tính P= (a+b+c-abc)^2/(a^2+1)(b^2+1)(c^2+1)
Ai giúp mik với mik đang cần gấp
help me
a, xét tam giác ABE và tam giác ACD có:
AC=AB(gt)
góc A chung
góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)
suy ra tam giác ABE= tam giác ACD(g.c.g)
suy ra BE=CD, AE=AD(đpcm)
AH=1/2 AC
AH=1/2 . 40 => AH = 20
Tam giác ABH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + BH2 = AB2
Thay số ta đc ;202 + BH2 = 292
=> BH2 = 202 - 292 ( tự tính nha )
Tam giác ACH vuông tại H ( GT)
Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )
B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc
1) \(\left(a+b\right)-\left(-a+b-c\right)+\left(c-a-b\right)\)
\(=a+b+a-b+c+c-a-b\)
\(=a-b+2c \left(đpcm\right)\)
2) \(a\left(b-c\right)-a\left(b+d\right)\)
\(=ab-ac-ab-ad\)
\(=-ac-ad\)
\(=-a\left(c+d\right) \left(đpcm\right)\)
Sử dụng điều kiện biến đổi thành 3 loại
-(a+b)=ab/c;-(b+c)=bc/a;-(c+a)=ac/b
Rồi thay vào từng vào P
Ta có:
-(a+b)/c-(b+c)/a-(a+c)/b
=-a/c - b/c - b/a - c/a - a/b - c/b
=-a(1/c+1/b)-b(1/c+1/a)-c(1/a+1/b)
Sử dụng đk ta có
1/c+1/b=-1/a; 1/c+1/a=-1/b;
1/a+1/b=-1/c
Thay tiếp=> P=3
Ta có :
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)
\(\Rightarrow2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=0\)
\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)
\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)
\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)
Lời giải:
Có:
$(a^2+1)(b^2+1)(c^2+1)=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$
$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$
Và:
$(a+b+c-abc)^2=[(a+b+c)(ab+bc+ac)-abc]^2$
$=[ab(a+b)+bc(b+c)+ca(c+a)+2abc]^2$
$=[ab(a+b+c)+bc(b+c+a)+ca(c+a)]^2$
$=[(a+b+c)(ab+bc)+ca(c+a)]^2=[b(a+b+c)(a+c)+ac(c+a)]^2$
$=[(c+a)(ab+b^2+bc+ac)]^2=[(c+a)(b+a)(b+c)]^2$
Do đó: $P=\frac{[(a+b)(b+c)(c+a)]^2}{[(a+b)(b+c)(c+a)]^2}=1$