K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 1

Lời giải:
Có:
$(a^2+1)(b^2+1)(c^2+1)=(a^2+ab+bc+ac)(b^2+ab+bc+ac)(c^2+ab+bc+ac)$

$=(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)=[(a+b)(b+c)(c+a)]^2$

Và:

$(a+b+c-abc)^2=[(a+b+c)(ab+bc+ac)-abc]^2$

$=[ab(a+b)+bc(b+c)+ca(c+a)+2abc]^2$

$=[ab(a+b+c)+bc(b+c+a)+ca(c+a)]^2$

$=[(a+b+c)(ab+bc)+ca(c+a)]^2=[b(a+b+c)(a+c)+ac(c+a)]^2$

$=[(c+a)(ab+b^2+bc+ac)]^2=[(c+a)(b+a)(b+c)]^2$
Do đó: $P=\frac{[(a+b)(b+c)(c+a)]^2}{[(a+b)(b+c)(c+a)]^2}=1$

31 tháng 3 2023

Bạn nên ấn vô biểu tượng \(\Sigma\) để đặt câu hỏi thì sẽ dễ nhìn hơn nhé.

31 tháng 3 2023

=1 nhé

giải cho mik ik mình đang cần gấp

3 tháng 5 2020

hừm để nghĩ đã

25 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AC=AB(gt)

góc A chung

góc ABE = góc ACD( do ABC= góc ACB, tia p/giác)

suy ra tam giác ABE= tam giác ACD(g.c.g)

suy ra BE=CD, AE=AD(đpcm)

5 tháng 5 2017

Theo bđt tam giác ta có: a<b+c 

Do a>0 => a2<ab+ac 

Tương tự có b2<bc+ab;c2<ac+bc

Suy ra a2+b2+c2<2(ab+bc+ca)

12 tháng 1 2022

AH=1/2 AC

AH=1/2 . 40 => AH = 20

Tam giác ABH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + BH2 = AB2

Thay số ta đc ;20+ BH= 29

=> BH= 202 - 29 ( tự tính nha )

Tam giác ACH vuông tại H ( GT)

Áp dụng định lý pytago ta có : AH2 + CH2 = AC2 (thay số rr tự tính )

B chu vi khi tính đc BH và CH r thì tính đc BC .sau đó tính chu vi tam giác là các cạnh cộng lại vs nhau là đc 

 

12 tháng 1 2022

chuyên toán nó phải gọi là đẳng cấp :)))))))

12 tháng 1 2020

1)   \(\left(a+b\right)-\left(-a+b-c\right)+\left(c-a-b\right)\)

\(=a+b+a-b+c+c-a-b\)

\(=a-b+2c \left(đpcm\right)\)

2)  \(a\left(b-c\right)-a\left(b+d\right)\)

\(=ab-ac-ab-ad\)

\(=-ac-ad\)

\(=-a\left(c+d\right) \left(đpcm\right)\)

5 tháng 7 2016

Sử dụng điều kiện biến đổi thành 3 loại

-(a+b)=ab/c;-(b+c)=bc/a;-(c+a)=ac/b

Rồi thay vào từng vào P

Ta có:

-(a+b)/c-(b+c)/a-(a+c)/b

=-a/c - b/c - b/a - c/a - a/b - c/b

=-a(1/c+1/b)-b(1/c+1/a)-c(1/a+1/b)

Sử dụng đk ta có

1/c+1/b=-1/a; 1/c+1/a=-1/b;

1/a+1/b=-1/c

Thay tiếp=> P=3

Ta có :

 \(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=a^2+b^2+c^2\)

\(\Rightarrow2\left(ab+bc+ca\right)=0\)

\(\Rightarrow ab+bc+ca=0\)

\(\Rightarrow\frac{ab+bc+ca}{abc}=0\)

\(\Rightarrow\frac{ab}{abc}+\frac{bc}{abc}+\frac{ca}{abc}=0\)

\(\Rightarrow\frac{1}{c}+\frac{1}{a}+\frac{1}{b}=0\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{3}{ab\left(\frac{1}{a}+\frac{1}{b}\right)}=-\frac{1}{c^3}\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{ab\left(-\frac{1}{c}\right)}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}-\frac{3}{abc}=0\)

\(\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\) (ĐPCM)